Advertisement

Glycoconjugate Journal

, Volume 27, Issue 5, pp 515–524 | Cite as

A synthetic globotriaosylceramide analogue inhibits HIV-1 infection in vitro by two mechanisms

  • Amanda L. Harrison
  • Martin L. Olsson
  • R. Brad Jones
  • Stephanie Ramkumar
  • Darinka Sakac
  • Beth Binnington
  • Stephen Henry
  • Clifford A. Lingwood
  • Donald R. BranchEmail author
Article

Abstract

Previously, it was shown that the cell-membrane-expressed glycosphingolipid, globotriaosylceramide (Gb3/Pk/CD77), protects against HIV-1 infection and may be a newly described natural resistance factor against HIV infection. We have now investigated the potential of a novel, water soluble, non-toxic and completely synthetic analogue of Gb3/Pk (FSL-Gb3) to inhibit HIV-1 infection in vitro. A uniquely designed analogue, FSL-Gb3, of the natural Gb3/Pk molecule was synthesized. HIV-1IIIB (X4 virus) and HIV-1Ba-L (R5 virus) infection of PHA/interleukin-2-activated, peripheral blood mononuclear cells (PBMCs) and Jurkat T cells in vitro was assessed, as well as infection of U87.CD4.CCR5 by various clinical R5 tropic viruses after treatment with FSL-Gb3. We monitored Gb3, CD4 and CXCR4 expression by fluorescent antibody cell sorting and viral replication by p24 gag ELISA. Total cellular Gb3 was examined by glycosphingolipid extraction and thin layer chromatography. In vivo toxicity was monitored in mice by histological assessment of vital organs and lymphoid tissue. FSL-Gb3 blocked X4 and R5 of both lab and clinical viral strains in activated PBMCs or the U87.CD4.CCR5 cell line with a 50% inhibitory concentration (IC50) of approximately 200–250 μM. FACS and TLC overlay showed that FSL-Gb3 can insert itself into cellular plasma membranes and that cellular membrane-absorbed FSL-Gb3 is able to inhibit subsequent HIV-1 infection. There was no effect of FSL-Gb3 on cell surface levels of CD4 or CXCR4. Thus, FSL-Gb3 can inhibit HIV-1 by two mechanisms: direct inhibition of virus and inhibition of viral entry. Infusion of FSL-Gb3 into laboratory mice at doses well in excess of theoretical therapeutic doses was tolerated with no untoward reactions. Our results demonstrate the potential utility of using a completely synthetic, water soluble globotriaosylceramide analogue, FSL-Gb3, having low toxicity, for possible future use as a novel therapeutic approach for the systemic treatment of HIV/AIDS.

Keywords

Glycosphingolipids Globotriaosylceramide Gb3 Pk blood group antigen HIV HIV infection 

Notes

Acknowledgments

This work was funded by the Canadian Blood Services through a graduate fellowship award to Amanda Harrison and operating grants from the Canadian Institutes for Health Research (CIHR), the Ontario HIV Treatment Network (OHTN), and the Canadian Association for HIV Research (CANFAR). Stephen Henry is a founder and shareholder in KODE Biotech Ltd. There are no other author conflicts of interest or financial interest in this work.

References

  1. 1.
    Moulds, J.M., Moulds, J.J.: Blood group associations with parasites, bacteria, and viruses. Transfus. Med. Rev. 14, 302–311 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    Spitalnik, P.F., Spitalnik, S.L.: The P blood group system: biochemical, serological, and clinical aspects. Transfus. Med. Rev. 9, 110–122 (1995)CrossRefPubMedGoogle Scholar
  3. 3.
    Schwartz-Albiez, R., Dorken, B., Moller, P., Brodin, N.T., Monner, D.A., Kniep, B.: Neutral glycosphingolipids of the globo-series characterize activation stages corresponding to germinal center B cells. Int. Immunol. 2, 929–936 (1990)CrossRefPubMedGoogle Scholar
  4. 4.
    Lund, N., Olsson, M.L., Ramkumar, S., Sakac, D., Yahalom, V., Levene, C., Hellberg, A., Ma, X.Z., Binnington, B., Jung, D., Lingwood, C.A., Branch, D.R.: The human Pk histo-blood group antigen provides protection against HIV-1 infection. Blood 13, 4989–4991 (2009)Google Scholar
  5. 5.
    Fantini, J., Hammache, D., Piéroni, G., Yahi, N.: Role of glycosphingolipid microdomains in CD4-dependent HIV-1 fusion. Glycoconj. J. 17, 199–204 (2000)CrossRefPubMedGoogle Scholar
  6. 6.
    Manes, S., Lacalle, R.A., Gomez-Mouton, C., del Real, G., Mira, E., Martinez-A, C.: Membrane raft microdomains in chemokine receptor function. Semin. Immunol. 13, 147–157 (2001)CrossRefPubMedGoogle Scholar
  7. 7.
    Liao, Z., Cimakasky, L.M., Hampton, R., Nguyen, D.H., Hildreth, J.E.: Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res. Hum. Retroviruses 11, 1009–1019 (2001)CrossRefGoogle Scholar
  8. 8.
    Fantini, J., Hammache, D., Delezay, O., Pieroni, G., Tamalet, C., Yahi, N.: Sulfatide inhibits HIV-1 entry into CD4 super(−)/CXCR4 super(+) cells. Virology 246, 211–220 (1998)CrossRefPubMedGoogle Scholar
  9. 9.
    Hammache, D., Piéroni, G., Yahi, N., Delézay, O., Koch, N., Lafont, H., Tamalet, C., Fantini, J.: Specific interaction of HIV-1 and HIV-2 surface envelope glycoproteins with monolayers of galactosylceramide and ganglioside GM3. J. Biol. Chem. 273, 7967–7971 (1998)CrossRefPubMedGoogle Scholar
  10. 10.
    Mahfoud, R., Garmy, N., Maresca, M., Yahi, N., Puigserver, A., Fantini, J.: Identification of a common sphingolipid-binding domain in alzheimer, prion, and HIV-1 proteins. J. Biol. Chem. 277, 11292–11296 (2002)CrossRefPubMedGoogle Scholar
  11. 11.
    Mylvaganam, M., Lingwood, C.A.: Adamantyl globotriaosyl ceramide: a monovalent soluble mimic which inhibits verotoxin binding to its glycolipid receptor. Biochem. Biophys. Res. Commun. 257, 391–394 (1999)CrossRefPubMedGoogle Scholar
  12. 12.
    Lund, N., Branch, D.R., Mylvaganam, M., Chark, D., Ma, X.Z., Sakac, D., Binnington, B., Fantini, J., Puri, A., Blumenthal, R., Lingwood, C.A.: A novel soluble mimic of the glycolipid, globotriaosyl ceramide inhibts HIV infection. AIDS 20, 333–343 (2006)CrossRefPubMedGoogle Scholar
  13. 13.
    Lund, N., Branch, D.R., Sakac, D., Lingwood, C.A., Siatskas, C., Robinson, C.J., Brady, R.O., Medin, J.A.: Lack of susceptibility of cells from patients with fabry disease to productive infection with R5 human immunodeficiency virus. AIDS 19, 1543–1546 (2005)CrossRefPubMedGoogle Scholar
  14. 14.
    Furukawa, K., Iwamura, K., Uchikawa, M., Sojka, B.N., Wiels, J., Okajima, T., Urano, T., Furukawa, K.: Molecular basis for the p phenotype: identification of distinct and multiple mutations in the alpha 1, 4-galactosyltransferase gene in swedish and japanese individuals. J. Biol. Chem. 275, 37752–37756 (2000)CrossRefPubMedGoogle Scholar
  15. 15.
    Steffensen, R., Carlier, K., Wiels, J., Levery, S.B., Stroud, M., Cedergren, B., Nilsson-Sojka, B., Bennett, E.P., Jersild, C., Clausen, H.: Cloning and expression of the histo-blood group pk UDP-galactose: Ga1beta-4G1cbeta1-cer alpha1, 4-galactosyltransferase: molecular genetic basis of the p phenotype. J. Biol. Chem. 272, 16723–16729 (2000)CrossRefGoogle Scholar
  16. 16.
    Hellberg, A., Steffensen, R., Yahalom, V., Sojka, B.N., Heier, H.E., Levene, C., Poole, J., Olsson, M.L.: Additional molecular bases of the clinically important p blood group phenotype. Transfusion 43, 899–907 (2003)CrossRefPubMedGoogle Scholar
  17. 17.
    Hellberg, A., Ringressi, A., Yahalom, V., Safwenberg, J., Reid, M.E., Olsson, M.L.: Genetic heterogeneity at the glycosyltransferase loci underlying the GLOB blood group system and collection. Br. J. Haematol. 125, 528–536 (2004)CrossRefPubMedGoogle Scholar
  18. 18.
    Hellberg, A., Poole, J., Olsson, M.L.: Molecular basis of the globoside-deficient P(k) blood group phenotype. identification of four inactivating mutations in the UDP-N-acetylgalactosamine: globotriaosylceramide 3-beta-N-acetylgalactosaminyltransferase gene. J. Biol. Chem. 277, 29455–29459 (2002)CrossRefPubMedGoogle Scholar
  19. 19.
    Ramkumar, S., Sakac, D., Binnington, B., Branch, D.R., Lingwood, C.A.: Induction of HIV-1 resistance: cell susceptibility to infection is an inverse function of globotriaosyl ceramide levels. Glycobiology 19, 76–82 (2009)CrossRefPubMedGoogle Scholar
  20. 20.
    Frame, T., Carroll, T., Korchagina, E., Bovin, N., Henry, S.: Synthetic glycolipid modification of red blood cell membranes. Transfusion 47, 876–882 (2007)CrossRefPubMedGoogle Scholar
  21. 21.
    Yousefi, S., Ma, X.Z., Singla, R., Zhou, Y.C., Sakac, D., Bali, M., Liu, Y., Sahai, B.M., Branch, D.R.: HIV-1 infection is facilitated in T cells by decreasing p56lck protein tyrosine kinase activity. Clin. Exp. Immunol. 133, 78–90 (2003)CrossRefPubMedGoogle Scholar
  22. 22.
    Nutikka, A., Binnington, B., Lingwood, C.A.: Methods for the identification of host receptors for shiga toxin. In: Philpott, D., Ebel, F. (eds.) E. coli: Shiga toxin methods and protocols, pp. 197–208. Humana Press, Totowa (2003)Google Scholar
  23. 23.
    Boyd, B., Magnusson, G., Zhiuyan, Z., Lingwood, C.A.: Lipid modulation of glycolipid receptor function: availability of gal(alpha 1–4)gal disaccharide for verotoxin binding in natural and synthetic glycolipids. Eur. J. Biochem. 223, 873–878 (1994)CrossRefPubMedGoogle Scholar
  24. 24.
    Delezay, O., Hammache, D., Fantini, J., Yahi, N.: SPC3, a V3 loop-derived synthetic peptide inhibitor of HIV-1 infection, binds to cell surface glycosphingolipids. Biochemistry 35, 15663–15671 (1996)CrossRefPubMedGoogle Scholar
  25. 25.
    Xiao, L., Owen, S.M., Goldman, I., Lal, A.A., dejong, J.J., Goudsmit, J., Lal, R.B.: CCR5 coreceptor usage of non-syncytium-inducing primary HIV-1 is independent of phylogenetically distinct global HIV-1 isolates: delineation of consensus motif in the V3 domain that predicts CCR5 usage. Virology 240, 83–92 (1998)CrossRefPubMedGoogle Scholar
  26. 26.
    Brown, B.K., Darden, J.M., Tovanabutra, S., Oblander, T., Frost, J., Sanders-Buell, E., de Souza, M.S., Birx, D.L., McCutchan, F.E., Polonis, V.R.: Biologic and genetic characterization of a panel of 60 human immunodeficiency virus type 1 isolates, representing clades A, B, C, D, CRF01 AE and CRF02 AG, for the development and assessment of candidate vaccines. J. Virol. 79, 6089–60101 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Amanda L. Harrison
    • 1
    • 2
    • 3
  • Martin L. Olsson
    • 4
  • R. Brad Jones
    • 5
  • Stephanie Ramkumar
    • 2
    • 3
  • Darinka Sakac
    • 1
  • Beth Binnington
    • 3
  • Stephen Henry
    • 6
  • Clifford A. Lingwood
    • 2
    • 3
  • Donald R. Branch
    • 1
    • 2
    Email author
  1. 1.Canadian Blood Services Research and Development/Toronto General Research InstituteTorontoCanada
  2. 2.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  3. 3.Hospital for Sick Children Research InstituteTorontoCanada
  4. 4.Division of Hematology and Transfusion Medicine, Department of Laboratory MedicineLund UniversityLundSweden
  5. 5.Department of ImmunologyUniversity of TorontoTorontoCanada
  6. 6.Biotechnology Research InstituteAUT UniversityAucklandNew Zealand

Personalised recommendations