Advertisement

Glycoconjugate Journal

, Volume 27, Issue 1, pp 171–179 | Cite as

No direct binding of the heat-labile enterotoxin of Escherichia coli to E. coli lipopolysaccharides

  • Lena Jansson
  • Jonas Ångström
  • Michael Lebens
  • Susann Teneberg
Article

Abstract

A novel carbohydrate binding site recognizing blood group A and B determinants in a hybrid of cholera toxin and Escherichia coli heat-labile enterotoxin B-subunits (termed LCTBK) has previously been described, and also the native heat-labile enterotoxin bind to some extent to blood group A/B terminated glycoconjugates. The blood group antigen binding site is located at the interface of the B-subunits. Interestingly, the same area of the B-subunits has been proposed to be involved in binding of the heat-labile enterotoxin to lipopolysaccharides on the bacterial cell surface. Binding of the toxin to lipopolysaccharides does not affect the GM1 binding capacity. The present study aimed at characterizing the relationship between the blood group A/B antigen binding site and the lipopolysaccharide binding site. However, no binding of the B-subunits to E. coli lipopolysaccharides in microtiter wells or on thin-layer chromatograms was obtained. Incubation with lipopolysaccharides did not affect the binding of the B-subunits of heat-labile enterotoxin of human isolates to blood group A-carrying glycosphingolipids, indicating that the blood group antigen site is not involved in LPS binding. However, the saccharide competition experiments showed that GM1 binding reduced the affinity for blood group A determinants and vice versa, suggesting that a concurrent occupancy of the two binding sites does not occur. The latter finding is related to a connection between the blood group antigen binding site and the GM1 binding site through residues interacting with both ligands.

Keywords

Carbohydrate binding E. coli heat-labile toxin lipopolysaccharide binding blood group A/B binding site GM1 binding site 

Notes

Acknowledgements

This study was supported by the Swedish Medical Research Council (Grant No. 12628), the Swedish Cancer Foundation, and Magnus Bergvalls Foundation.

References

  1. 1.
    Holmgren, J.: Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of gangliosides and natural cholera toxoid. Infect. Immun. 8, 851–859 (1973)PubMedGoogle Scholar
  2. 2.
    Holmgren, J., Lönnroth, I., Månsson, J., Svennerholm, L.: Interaction of cholera toxin and membrane GM1 ganglioside of small intestine. Proc. Natl. Acad. Sci. USA 72, 2520–2524 (1975)CrossRefPubMedGoogle Scholar
  3. 3.
    Ångström, J., Teneberg, S., Karlsson, K.-A.: Delineation and comparison of ganglioside binding epitopes for the toxins from Vibrio cholerae Escherichia coli and Clostridium tetani. Proc. Natl. Acad. Sci. USA 91, 11859–11863 (1994)CrossRefPubMedGoogle Scholar
  4. 4.
    Fukuta, S., Magnani, J.L., Twiddy, E.M., Holmes, R.K., Ginsburg, V.: Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa, and LT-IIb. Infect. Immun. 56, 1748–1753 (1988)PubMedGoogle Scholar
  5. 5.
    Orlandi, P.A., Crithley, D.R., Fishman, P.H.: The heat-labile enterotoxin of Escherichia coli binds to polylactosaminoglycan-containing receptors in CaCo-2 human intestinal epithelial cells. Biochemistry 33, 12886–12895 (1994)CrossRefPubMedGoogle Scholar
  6. 6.
    Teneberg, S., Hirst, T.R., Ångström, J., Karlsson, K.-A.: Comparison of the glycolipid-binding specificities of cholera toxin and porcine Escherichia coli heat-labile enterotoxin: identification of a receptor-active non-ganglioside glycolipid for the heat-labile toxin in infant rabbit small intestine. Glycoconj. J. 11, 533–540 (1994)CrossRefPubMedGoogle Scholar
  7. 7.
    Ångström, J., Bäckström, M., Berntsson, A., Karlsson, N., Holmgren, J., Karlsson, K.-A., Teneberg, S.: Novel carbohydrate binding site recognizing blood group A and B determinants in a cholera toxin/heat-labile enterotoxin B-subunit hybrid. J. Biol. Chem. 275, 3231–3238 (2000)CrossRefPubMedGoogle Scholar
  8. 8.
    Holmner, Å., Lebens, M., Teneberg, S., Ångström, J., Ökvist, M., Krengel, U.: Novel binding site identified in a hybrid between cholera toxin and heat-labile enterotoxin; 1.9 Å crystal structure reveals the details. Structure 12, 1655–1667 (2004)CrossRefPubMedGoogle Scholar
  9. 9.
    Holmner, Å., Askarieh, G., Ökvist, M., Krengel, U.: Blood group antigen recognition by Escherichia coli heat-labile enterotoxin. J. Mol. Biol. 371, 754–764 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    Horstman, A.L., Kuehn, M.J.: Enterotoxigenic Escherichia coli secretes active heat-labile enterotoxin via outer membrane vesicles. J. Biol. Chem. 275, 12489–12496 (2000)CrossRefPubMedGoogle Scholar
  11. 11.
    Horstman, A.L., Kuehn, M.J.: Bacterial surface association of heat-labile enterotoxin through lipopolysaccharide after secretion via the general secretory pathway. J. Biol. Chem. 277, 32538–32545 (2002)CrossRefPubMedGoogle Scholar
  12. 12.
    Horstman, A.L., Bauman, S.J., Kuehn, M.J.: Lipopolysaccharide 3-deoxy-D-manno-octulosonic acid (Kdo) core determines bacterial association of secreted toxins. J. Biol. Chem. 279, 8070–8075 (2004)CrossRefPubMedGoogle Scholar
  13. 13.
    Kesty, N.C., Mason, K.M., Reedy, M., Miller, S.E., Kuehn, M.J.: Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J. 23, 4538–4549 (2004)CrossRefPubMedGoogle Scholar
  14. 14.
    Sanchez, J., Holmgren, J.: Recombinant system for overexpression of cholera toxin B subunit in Vibrio cholerae as a basis for vaccine development. Proc. Natl. Acad. Sci. USA 86, 481–485 (1989)CrossRefPubMedGoogle Scholar
  15. 15.
    Sandkvist, M., Hirst, T.R., Bagdasarian, M.: Alterations at the carboxyl terminus change assembly and secretion properties of the B subunit of Escherichia coli heat-labile enterotoxin. J. Bacteriol. 169, 4570–4576 (1987)PubMedGoogle Scholar
  16. 16.
    Lebens, M., Johansson, S., Osek, J., Lindblad, M., Holmgren, J.: Large-scale production of Vibrio cholerae toxin B subunit for use in oral vaccines. Biotechnology 11, 1574–1578 (1993)CrossRefPubMedGoogle Scholar
  17. 17.
    Lebens, M., Shahabi, V., Bäckström, M., Houze, T., Lindblad, M., Holmgren, J.: Synthesis of hybrid molecules between heat-labile enterotoxin and cholera toxin B subunits: potential for use in a broad-spectrum vaccine. Infect. Immun. 64, 2144–2150 (1996)PubMedGoogle Scholar
  18. 18.
    Aggarwal, B.B., Eessalu, T.E., Hass, P.E.: Characterization of receptors for human tumor necrosis factor and their regulation by γ-interferon. Nature 318, 665–667 (1985)CrossRefPubMedGoogle Scholar
  19. 19.
    Karlsson, K.-A.: Preparation of total non-acid glycolipids for overlay analysis of receptors for bacteria and viruses and for other studies. Meth. Enzymol. 138, 212–220 (1987)CrossRefPubMedGoogle Scholar
  20. 20.
    Svennerholm, L.: Chromatographic separation of human brain gangliosides. J. Neurochem. 10, 613–623 (1963)CrossRefPubMedGoogle Scholar
  21. 21.
    McKibbin, J.M., Spencer, W.A., Smith, E.L., Månsson, J.-E., Karlsson, K.-A., Samuelsson, B.E., Li, Y.-T., Li, S.-C.: Lewis blood group fucolipids and their isomers from human and canine intestine. J. Biol. Chem. 257, 755–760 (1982)PubMedGoogle Scholar
  22. 22.
    Holgersson, J.P., Jovall, A., Samuelsson, B.E., Breimer, M.E.: Structural characterization of non-acid glycosphingolipids in kidneys of single blood group O and A pigs. J. Biochem 108, 766–777 (1990)PubMedGoogle Scholar
  23. 23.
    Urbina, F., Nordmark, E.-L., Yang, Z., Weintraub, A., Scheutz, F., Widmalm, G.: Structural elucidation of the O-antigenic polysaccharide from the enteroaggregative Escherichia coli strain 180/C3 and its immunochemical relationship with E. coli O5 and O65. Carbohydr. Res 340, 645–650 (2005)CrossRefPubMedGoogle Scholar
  24. 24.
    Alaniz, M.E., Lardone, R.D., Yudowski, S.L., Farace, M.I., Nores, G.A.: Normally occurring human anti-GM1 immunoglobulin M antibodies and the immune response to bacteria. Infect. Immun. 72, 2148–2151 (2004)CrossRefPubMedGoogle Scholar
  25. 25.
    Waldi, D.: Sprühreagentien für die dünnschicht-chromatographie. In: Stahl, E. (ed.) dünnschicht-chromatographie, pp. 496–515. Springer-Verlag, Berlin (1962)Google Scholar
  26. 26.
    Freudenberg, M.A., Galanos, C.: Bacterial lipopolysaccharides: structure, metabolism and mechanisms of action. Int. Rev. Immunol. 6, 207–221 (1990)CrossRefPubMedGoogle Scholar
  27. 27.
    Brandenburg, K., Koch, M.H.J., Seydel, U.: Phase diagram of lipid A from Salmonella minnesota and Escherichia coli rough mutant lipopolysaccharide. J. Struct. Biol. 105, 11–21 (1990)CrossRefPubMedGoogle Scholar
  28. 28.
    Brandenburg, K.: Fourier transform infrared spectroscopy characterization of the lamellar and nonlamellar structures of free lipid A and Re lipopolysaccharides from Salmonella minnesota and Escherichia coli. Biophys. J. 64, 1215–1231 (1993)CrossRefPubMedGoogle Scholar
  29. 29.
    Bergstrand, A., Svanberg, C., Langton, M., Nydén, M.: Aggregation behavior and size of lipopolysaccharide from Escherichia coli O55:B5. Colloids Surf. B Biointerfaces. 53, 9–14 (2006)CrossRefPubMedGoogle Scholar
  30. 30.
    Merritt, E.A., Sarfaty, S., van den Akker, F., L´Hoir, C., Martial, J.A., Hol, W.G.: Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3, 166–175 (1994)PubMedCrossRefGoogle Scholar
  31. 31.
    Stenutz, R., Weintraub, A., Widmalm, G.: The structure of Escherichia coli O-polysaccharide antigens. FEMS Microbiol. Rev. 30, 382–403 (2006)CrossRefPubMedGoogle Scholar
  32. 32.
    Teneberg, S., Berntsson, A., Ångström, J.: Common architecture of the primary galactose binding sites of Erythrina corallodendron lectin and the heat-labile enterotoxin from Escherichia coli and binding of branched neolactohexaosylceramide. J. Biochem. 128, 481–491 (2000)PubMedGoogle Scholar
  33. 33.
    Barra, J.L., Monferran, C.G., Balanzino, L.E., Cumar, F.A.: Escherichia coli heat-labile enterotoxin preferentially interacts with blood group A-active glycolipids from pig intestinal mucosa and A- and B-active glycolipids from human red cells compared to H-active glycolipids. Mol. Cell. Biochem. 115, 63–70 (1992)CrossRefPubMedGoogle Scholar
  34. 34.
    Balanzino, L.E., Barra, J.L., Monferran, C.G., Cumar, F.A.: Differential interaction of Escherichia coli heat-labile toxin and cholera toxin with pig intestinal brush border glycoproteins depending on their ABH and related blood group antigenic determinants. Infect. Immun. 62, 1460–1464 (1994)PubMedGoogle Scholar
  35. 35.
    Balanzino, L.E., Barra, J.L., Galvan, E.M., Roth, G.A., Monferran, C.G.: Interaction of cholera toxin and Escherichia coli heat-labile enterotoxin with glycoconjugates from rabbit intestinal brush border membranes: relationship with ABH blood group determinants. Mol. Cell. Biochem. 194, 53–62 (1999)CrossRefPubMedGoogle Scholar
  36. 36.
    Galvan, E.M., Roth, G.A., Monferran, C.G.: Participation of ABH glycoconjugates in the secretory response to Escherichia coli heat-labile toxin in rabbit intestine. J. Infect. Dis. 180, 419–425 (1999)CrossRefPubMedGoogle Scholar
  37. 37.
    Galvan, E.M., Diema, C.D., Roth, G.A., Monferran, C.G.: Ability of blood group A-active glycosphingolipids to act as Escherichia coli heat-labile enterotoxin receptors in HT-29 cells. J. Infect. Dis. 189, 1556–1564 (2004)CrossRefPubMedGoogle Scholar
  38. 38.
    Galvan, E.M., Roth, G.A., Monferran, C.G.: Functional interaction of Escherichia coli heat-labile enterotoxin with blood group A-active glycoconjugates from differentiated HT29 cells. FEBS J. 273, 3444–3453 (2006)CrossRefPubMedGoogle Scholar
  39. 39.
    Harris, J.B., Khan, A.A.I., LaRocque, R.C., Dorer, D.J., Chowdhury, F., Faruque, A.S.G., Sack, D.A., Ryan, E.T., Qadri, F., Calderwood, S.B.: Blood group, immunity, and risk of infection with Vibrio cholerae in an area of endemicity. Infect. Immun. 73, 7422–7427 (2005)CrossRefPubMedGoogle Scholar
  40. 40.
    Black, R.E., Levine, M.M., Clements, M.L., Hughes, T., O´Donnell, S.: Association between O blood group and occurrence and severity of diarrhoea due to Escherichia coli. Trans. R. Soc. Trop. Med. Hyg 81, 120–123 (1987)CrossRefPubMedGoogle Scholar
  41. 41.
    van Loon, F.P., Clemens, J.D., Sack, D.A., Rao, M.R., Ahmed, F., Chowdury, S., Harris, J.R., Ali, M., Chakraborty, J., Khan, M.R.: ABO blood groups and the risk of diarrhea due to enterotoxigenic Escherichia coli. J. Infect. Dis. 163, 1243–1246 (1994)Google Scholar
  42. 42.
    Qadri, F., Saha, A., Ahmed, T., Al Tarique, A., Begum, Y.A., Svennerholm, A.-M.: Disease burden due to enterotoxigenic Escherichia coli in the first 2 years of life in an urban community in Bangladesh. Infect. Immun 75, 3961–3968 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Lena Jansson
    • 1
  • Jonas Ångström
    • 1
  • Michael Lebens
    • 2
  • Susann Teneberg
    • 1
  1. 1.Institute of Biomedicine, Department of Medical Biochemistry and Cell BiologyUniversity of GothenburgGöteborgSweden
  2. 2.Institute of Biomedicine, Department of Medical Microbiology and ImmunologyUniversity of GothenburgGöteborgSweden

Personalised recommendations