Glycoconjugate Journal

, Volume 27, Issue 1, pp 69–77 | Cite as

Multimeric bivalent immunogens from recombinant tetanus toxin HC fragment, synthetic hexasaccharides, and a glycopeptide adjuvant

  • Aileen F. G. Bongat
  • Rina Saksena
  • Roberto Adamo
  • Yukari Fujimoto
  • Zenyu Shiokawa
  • Dwight C. Peterson
  • Koichi Fukase
  • Willie F. Vann
  • Pavol Kováč


Using recombinant tetanus toxin HC fragment (rTT-HC) as carrier, we prepared multimeric bivalent immunogens featuring the synthetic hexasaccharide fragment of O-PS of Vibrio cholerae O:1, serotype Ogawa, in combination with either the synthetic hexasaccharide fragment of O-PS of Vibrio cholerae O:1, serotype Inaba, or a synthetic disaccharide tetrapeptide peptidoglycan fragment as adjuvant. The conjugation reaction was effected by squaric acid chemistry and monitored in virtually real time by SELDI-TOF MS. In this way, we could prepare well-defined immunogens with predictable carbohydrate–carrier ratio, whose molecular mass and the amount of each saccharide attached could be independently determined. The ability to prepare such neoglycoconjugates opens unprecedented possibilities for preparation of conjugate vaccines for bacterial diseases from synthetic carbohydrates.


Conjugate vaccine Vibrio cholerae Adjuvant Squaric acid Tetanus toxin C fragment 



Tetanus toxoid


Recombinant tetanus toxin fragment C


Tetanus toxin fragment C


O-specific Polysaccharides


Surface-enhanced laser desorption time-of-flight mass spectrometry


Bovine serum albumin







This research was supported by the Intramural Research Program of the NIH, NIDDK.


  1. 1.
    Dick Jr., W.E., Beurret, M.: Glycoconjugates of bacterial carbohydrate antigens. In: Cruse, J.M. Lewis Jr. R.E. (eds.) Conjugate vaccines, pp. 48–114. Krager, Basel (1989)Google Scholar
  2. 2.
    Jones, C.: Vaccines based on the cell surface carbohydrates of pathogenic bacteria. Ann. Brazil. Acad. Sci. 77, 293–324 (2005)Google Scholar
  3. 3.
    Vliegenthart, J.F.G.: Carbohydrate based vaccines. FEBS Lett. 580, 2945–2950 (2006)CrossRefPubMedGoogle Scholar
  4. 4.
    Louch, H.A., Buczko, E.S., Woody, M.A., et al.: Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin. Biochemistry 41, 13644–13652 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    Helting, T.B., Zwisler, O.: Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments. J. Biol. Chem. 252, 187–193 (1977)PubMedGoogle Scholar
  6. 6.
    Helting, T.B., Zwisler, O., Wiegandt, H.: Structure of tetanus toxin. II. Toxin binding to ganglioside. J. Biol. Chem. 252, 194–198 (1977)PubMedGoogle Scholar
  7. 7.
    Umland, T.C., Wingert, L.M., Swaminathan, S., et al.: Structure of the receptor binding fragment HC of tetanus neurotoxin. Nat. Struct. Biol. 4, 788–792 (1997)CrossRefPubMedGoogle Scholar
  8. 8.
    Makoff, A.J., Ballantine, S.P., Smallwood, A.E., et al.: Expression of tetanus toxin fragment C in E. coli: its purification and potential as vaccine. Bio/Technology 7, 1043–1046 (1989)Google Scholar
  9. 9.
    Fairweather, N.F., Chatfield, S.N., Makoff, A.J., et al.: Oral vaccination of mice against tetanus by use of a live attenuated Salmonella carrier. Infect. Immun. 58, 1323–1326 (1990)PubMedGoogle Scholar
  10. 10.
    Tregoning, J.S., Nixon, P., Kuroda, H., et al.: Expression of tetanus toxin fragment C in tobacco choloroplasts. Nucleic Acid Res. 31, 1174–1179 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    Anderson, R., Gao, X.M., Papakonstantinopoulou, A., et al.: Immune response in mice following immunization with DNA encoding fragment C of tetanus toxin. Infect. Immun. 64, 3168–3173 (1996)PubMedGoogle Scholar
  12. 12.
    Gustafsson, B., Whitmore, E., Tiru, M.: Neutralization of tetanus toxin by human monoclonal antibodies directed against tetanus toxin fragment C. Hybridoma 12, 699–708 (1993)CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang, J., Yergey, A., Kowalak, J., et al.: Studies towards neoglycoconjugates from the monosaccharide determinant of Vibrio cholerae O:1, serotype Ogawa using the diethyl squarate reagent. Carbohydr. Res. 313, 15–20 (1998)CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang, J., Kováč, P.: Studies on vaccines against cholera. Synthesis of neoglycoconjugates from the hexasaccharide determinant of Vibrio cholerae O:1, serotype Ogawa, by single-point attachment or by attachment of the hapten in the form of clusters. Carbohydr. Res. 321, 157–167 (1999)CrossRefPubMedGoogle Scholar
  15. 15.
    Chernyak, A., Karavanov, A., Ogawa, Y., et al.: Conjugating oligosaccharides to proteins by squaric acid diester chemistry; rapid monitoring of the progress of conjugation, and recovery of the unused ligand. Carbohydr. Res. 330, 479–486 (2001)CrossRefPubMedGoogle Scholar
  16. 16.
    Saksena, R., Chernyak, A., Karavanov, A., et al.: Conjugating low molecular mass carbohydrates to proteins. 1. Monitoring the progress of conjugation. In: Lee, Y. C., Lee, R. (eds.) Methods in enzymology, pp. 125–139. Academic Press, (2003)Google Scholar
  17. 17.
    Hou, S-j., Saksena, R., Kováč, P.: Preparation of glycoconjugates by dialkyl squarate chemistry revisited. Carbohydr. Res. 343, 196–210 (2008)CrossRefPubMedGoogle Scholar
  18. 18.
    Tietze, L.F., Schröter, C., Gabius, S., et al.: Conjugation of p-aminophenyl glycosides with squaric acid diester to a carrier protein and the use of neoglycoprotein in the histochemical detection of lectins. Bioconjugate Chem. 2, 148–153 (1991)CrossRefGoogle Scholar
  19. 19.
    Saksena, R., Ma, X., Kováč, P.: One-pot preparation of a series of glycoconjugates with predetermined antigen-carrier ratio from oligosaccharides that mimic the O-PS of Vibrio cholerae O:1, serotype Ogawa. Carbohydr. Res. 338, 2591–2603 (2003)CrossRefPubMedGoogle Scholar
  20. 20.
    Ma, X., Saksena, R., Chernyak, A., et al.: Neoglycoconjugates from synthetic tetra- and hexasaccharides that mimic the terminus of the O-PS of Vibrio cholerae O:1, serotype Inaba. Org. Biomol. Chem. 1, 775–784 (2003)CrossRefPubMedGoogle Scholar
  21. 21.
    Rollenhagen, J.E., Kalsy, A., Saksena, R., et al.: Transcutaneous immunization with a neoglycoconjugate containing a V. colerae hexasaccharide derived from V. cholerae O1 Ogawa lipopolysaccharide bound to a protein carrier. Am. J. Trop. Med. Hyg. Suppl. 75, 84–85 (2006)Google Scholar
  22. 22.
    Saksena, R., Adamo, R., Kováč, P.: Studies towards a conjugate vaccine for anthrax. Synthesis and characterization of anthrose [4, 6-dideoxy-4-(3-hydroxy-3-methylbutanamido)-2-O-methyl-D-glucopyranose] and its methyl glycosides. Carbohydr. Res. 340, 1591–1600 (2005)CrossRefPubMedGoogle Scholar
  23. 23.
    Saksena, R., Ma, X., Wade, T.K., et al.: Length of the linker and the interval between immunizations infuences the efficacy of Vibrio cholerae O:1 Ogawa hexasaccharide neoglycoconjugates. FEMS Immunol. Med. Microbiol. 46, 116–128 (2006)CrossRefGoogle Scholar
  24. 24.
    Saksena, R., Ma, X., Wade, T.K., et al.: Effect of saccharide length on the immunogenicity of neoglycoconjugates from synthetic fragments of the O-SP of Vibrio cholerae O:1, serotype Ogawa. Carbohydr. Res. 340, 2256–2269 (2005)CrossRefPubMedGoogle Scholar
  25. 25.
    Chernyak, A., Kondo, S., Wade, T.K., et al.: Induction of protective immunity by synthetic Vibrio Cholerae Hexasaccharide derived from Vibrio cholerae O:1 Ogawa lipopolysaccharide bound to a protein carrier. J. Infect. Dis. 185, 950–962 (2002)CrossRefPubMedGoogle Scholar
  26. 26.
    Meeks, M.D., Saksena, R., Ma, X., et al.: Synthetic fragments of Vibrio cholerae O:1 Inaba O-SP bound to a protein carrier are immunogenic in mice but do not induce protective antibodies. Infect. Immun. 72, 4090–4101 (2004)CrossRefPubMedGoogle Scholar
  27. 27.
    Adamo, R., Kováč, P.: Glycosylation under thermodynamic control: synthesis of the di- and the hexasaccharide fragments of the O-SP of Vibrio Cholerae O:1 serotype Ogawa from fully functionalized building blocks. Eur. J. Org. Chem. 988-2000 (2007)Google Scholar
  28. 28.
    Ogawa, Y., Lei, P.-S., Kováč, P.: Synthesis of ligands related to the Vibrio cholerae O-specific antigen. Part 12. Synthesis of eight glycosides of hexasaccharide fragments representing the terminus of the O-polysaccharide of Vibrio cholerae O:1, serotype Inaba and Ogawa, bearing aglycons suitable for linking to proteins. Carbohydr. Res. 293, 173–194 (1996)CrossRefPubMedGoogle Scholar
  29. 29.
    Ravenscroft, N., Jones, C.: Glycoconjugate vaccines. Curr. Opin. Drug Discovery Dev. 3, 222–231 (2000)Google Scholar
  30. 30.
    Fujimoto, Y., Konishi, Y., Kubo, O., et al.: Tet. Lett. accepted for publication (2009)Google Scholar
  31. 31.
    Inamura, S., Fujimoto, Y., Kawasaki, A., et al.: Synthesis of peptidoglycan fragments and evaluation of their biological activity. Org Biomol Chem 4, 232–242 (2006)CrossRefPubMedGoogle Scholar
  32. 32.
    Tomasic, J., Hanzl-Dujmovic, I., Spoljar, B., et al.: Comparative study of the effects of peptidoglycan monomer and structurally related adamantyltripeptides on humoral immune response to ovalbumin in the mouse. Vaccine 18, 1236–1243 (2000)CrossRefPubMedGoogle Scholar
  33. 33.
    Kanneganti, T.D., Lamkanfi, M., Núñez, G.: Intracellular NOD-like receptors in host defese and disease. Immunity 27, 549–559 (2007)CrossRefPubMedGoogle Scholar
  34. 34.
    McKee, A.S., Munks, M.W., Marrack, P.: How do adjuvants work? Important considerations for new generation adjuvants. Immunity 27, 687–690 (2007)CrossRefPubMedGoogle Scholar
  35. 35.
    Takada, H., Nagao, S., Kotani, S., et al.: Mitogenic effects of bacterial cell walls and their components on murine splenocytes. Biken J. 23, 61–68 (1980)PubMedGoogle Scholar
  36. 36.
    Kamath, V.P., Diedrich, P., Hindsgaul, O.: Use of diethyl squarate for the coupling of oligosaccharide amines to carrier proteins and characterization of the resulting neoglycoproteins by MALDI-TOF mass spectrometry. Glycoconjugate J. 13, 315–319 (1996)CrossRefGoogle Scholar
  37. 37.
    Patel, A., Lindhorst, T. K.: Synthesis of “mixed type” oligosaccharide mimetics based on a carbohydrate scaffold. Eur. J. Org. Chem. 79–86 (2002)Google Scholar
  38. 38.
    Grigalevicius, S., Chierici, S., Renaudet, O., et al.: Assembly and immunological evaluation of multiepitopic glycoconjugates bearing clustered Tn antigen as synthetic anticancer vaccines. Bioconjugate Chem. 16, 1149–1159 (2005)CrossRefGoogle Scholar
  39. 39.
    Renaudet, O., Dumy, P.: Chemoselectively template-assembled glycoconjugates as mimics for multivalent presentation of carbohydrates. Org. Lett. 5, 243–246 (2003)CrossRefPubMedGoogle Scholar
  40. 40.
    Mutter, M., Dumy, P., Garrouste, P., et al.: Template assembled synthetic proteins (TASP) as functional mimetics of proteins. Angew. Chem. Int. Ed. Engl. 35, 1481–1485 (1996)CrossRefGoogle Scholar
  41. 41.
    Tuchscherer, G., Lehmann, C., Mathieu, M.: New protein mimetics: the zinc finger motif as a locked-in tertiary fold. Angew. Chem. Int. Ed. Engl. 37, 2990–2993 (1998)CrossRefGoogle Scholar
  42. 42.
    Kale, R.R., Clancy, C.M., Vermillion, R.M., et al.: Synthesis of soluble multivalent glycoconjugates that target the HC region of botulinum neurotoxin A. Bioorg. Med. Chem. Lett. 17, 2459–2464 (2007)CrossRefPubMedGoogle Scholar
  43. 43.
    Dumy, P., Eggleston, I.M., Cervigni, S., et al.: A convenient synthesis of cyclic peptides as regioselectively addressable functionalized templates (RAFT). Tetrahedron Lett. 36, 1255–1258 (1995)CrossRefGoogle Scholar
  44. 44.
    Peters, T., Bundle, D.R.: Synthetic antigenic determinants of the Brucella A polysaccharide: A disaccharide thioglycoside for block synthesis of pentasaccharide and lower homologues of a 1, 2-linked 4, 6-dideoxy-4-formamido-α-D-mannose. Can. J. Chem. 67, 491–496 (1989)CrossRefGoogle Scholar
  45. 45.
    Gast, J.C., Atalla, R.H., McKelvey, R.D.: The 13C N.M.R. spectra of the xylo- and cello-oligosaccharides. Carbohydr. Res. 84, 137–146 (1980)CrossRefGoogle Scholar
  46. 46.
    Kováč, P., Hirsch, J.: Alternative syntheses of methylated sugars, Part XXIV. Sequential synthesis and 13C-NMR spectra of methyl β-glycosides of β-(1-4)-D-xylo-oligo-saccharides. Carbohydr. Res. 100, 177–193 (1982)CrossRefGoogle Scholar
  47. 47.
    Friebolin, H.: Basic one- and two dimensional NMR spectroscopy. VCH, New York (1993)Google Scholar
  48. 48.
    Tietze, L. F., Fischer, R., Guder, H. J., et al.: Development of selective cytostatica for cancer therapy. Syntheis of acetal-β-glucosides from cytotoxic aldehydes. Justus Liebigs Ann. Chem. 847–856 (1987)Google Scholar
  49. 49.
    Fairweather, N.F., Lyness, V.A., Pickard, D.J., et al.: Cloning, nucleotide sequencing, and expression of tetanus toxin fragment C in Escherichia coli. J. Bacteriol. 165, 21–27 (1986)PubMedGoogle Scholar
  50. 50.
    Emsley, P., Fotinou, C., Black, I., et al.: The structures of the HC fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J. Biol. Chem. 275, 8889–8894 (2000)CrossRefPubMedGoogle Scholar
  51. 51.
    Fotinou, C., Emsley, P., Black, I., et al.: The crystal structure of tetanus toxin HC fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J. Biol. Chem. 276, 32274–32281 (2001)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aileen F. G. Bongat
    • 1
  • Rina Saksena
    • 3
  • Roberto Adamo
    • 1
  • Yukari Fujimoto
    • 2
  • Zenyu Shiokawa
    • 2
  • Dwight C. Peterson
    • 3
  • Koichi Fukase
    • 2
  • Willie F. Vann
    • 3
  • Pavol Kováč
    • 1
  1. 1.NIDDK, LBCNational Institutes of HealthBethesdaUSA
  2. 2.Department of Chemistry, Graduate School of ScienceOsaka UniversityToyonakaJapan
  3. 3.OVRR, CBER, FDALaboratory of Bacterial ToxinsBethesdaUSA

Personalised recommendations