Advertisement

Glycoconjugate Journal

, Volume 27, Issue 1, pp 189–198 | Cite as

Novel proteoglycan glycotechnology: chemoenzymatic synthesis of chondroitin sulfate-containing molecules and its application

  • Masanori YamaguchiEmail author
  • Keiichi Takagaki
  • Kaoru Kojima
  • Naohiro Hayashi
  • Fengchao Chen
  • Ikuko Kakizaki
  • Atsushi Kon
  • Masahiko Endo
Article

Abstract

Proteoglycans consist of a protein core, with one or more glycosaminoglycan chains (i.e., chondroitin sulfate, dermatan sulfate and heparin sulfate) bound covalently to it. The glycosaminoglycan chains account for many of the functions and properties of proteoglycans. The development of proteoglycan glycotechnology to exploit the functionality of glycosaminoglycan chains is an extremely important aspect of glycobiology. Here we describe an efficient and widely applicable method for chemoenzymatic synthesis of conjugate compounds comprising intact long chondroitin sulfate (ChS) chains. An alkyne containing ChS was prepared by an enzymatic transfer reaction and linked with a chemically synthesized core compound containing an azido group using click chemistry. This method enabled highly efficient introduction of ChS into target materials. Furthermore, the ChS-introduced compounds had marked stability against proteolysis, and the chemically linked ChS chain contributed to the stability of these core compounds. We believe the present method will contribute to the development of proteoglycan glycobiology and technology.

Keywords

Chondroitin sulfate Click chemistry Glycosaminoglycan Neo-proteoglycan Proteoglycan 

Abbreviations

AMC

7-amino-4-methylcoumarin

Boc

t-butoxycarbonyl

BSA

bovine serum albumin

ChS

chondroitin sulfate

DCC

dicyclohexylcarbodiimide

DMT-MM

4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride

EDC

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide

ESI-MS-MS

electrospray ionization tandem mass spectrometry

GAG

glycosaminoglycan

Gal

galactose

GalNAc

N-acetylgalactosamine

GlcA

glucuronic acid

HPLC

high-performance liquid chromatography

NMM

N-methylmorpholine

RP

reverse phase

SEC

size exclusion chromatography

TEA

triethylamine

Xyl

xylose

Notes

Acknowledgements

We dedicate this paper to the late Prof. Keiichi Takagaki. We thank Prof. Hironobu Hojo, University Tokai, for the amino acid analysis. We also thank Dr. Akiharu Ueki and Dr. Jun Wada for helpful discussion. This work was partly supported by Japan Society for the Promotion of Science (Gant-in-Aid for Young Scientists (B) No. 21710230), by the Found for the Promotion of International Scientific Research and by the Found for Cooperation for Innovative Technology and Advanced Research in Evolution Area (CITY AREA).

References

  1. 1.
    Doege, K., Sasaki, M., Horigan, E., Hassell, J.R., Yamada, Y.: Complete primary structure of the rat cartilage proteoglycan core protein deduced from cDNA clones. J. Biol. Chem. 262, 17757–17767 (1987)PubMedGoogle Scholar
  2. 2.
    Sugahara, K., Mikami, T., Uyama, T., Mizuguchi, S., Nomura, K., Kitagawa, H.: Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr. Opin. Struct. Biol. 13, 612–620 (2003)CrossRefPubMedGoogle Scholar
  3. 3.
    Iida, J., Pei, D., Kang, T., Simpson, M.A., Herlyn, M., Furcht, L.T., McCarthy, J.B.: Melanoma chondroitin sulfate proteoglycan regulates matrix metalloproteinase-dependent human melanoma invasion into type I collagen. J. Biol. Chem. 276, 18786–18794 (2001)CrossRefPubMedGoogle Scholar
  4. 4.
    Maeda, N., He, J., Yajima, Y., Mikami, T., Sugahara, K., Yabe, T.: Heterogeneity of the chondroitin sulfate portion of phosphacan/6B4 proteoglycan regulates its binding affinity for pleiotrophin/heparin binding growth-associated molecule. J. Biol. Chem. 278, 35805–35811 (2003)CrossRefPubMedGoogle Scholar
  5. 5.
    Simonsen, C.C., Shepard, H.M., Gray, P.W., Leung, D.W., Pennica, D., Yerverton, E., Derynck, R., Sherwood, P.J., Levinson, A.D., Goeddel, V.: In: Merigan, T.C., Friedman, R.M. (eds.) Interferons, pp. 1–14. Academic Press, New York (1982)Google Scholar
  6. 6.
    Hirose, S., Ohsawa, T., Inagami, T., Murakami, K.: Brain renin from bovine anterior pituitary. J. Biol. Chem. 257, 6316–6321 (1982)PubMedGoogle Scholar
  7. 7.
    Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 3, 97–130 (1993)CrossRefPubMedGoogle Scholar
  8. 8.
    Lindahl, U., Roden, L.: Glycoproteins, pp. 491–517. Elsevier Scientific Publishing Co., New York (1972)Google Scholar
  9. 9.
    Allen, G.J., Reid, F.B.: n-Pentenyl glycosyl orthoesters as versatile intermediates in oligosaccharide synthesis. The proteoglycan linkage region. J. Am. Chem. Soc. 121, 468–469 (1999)CrossRefGoogle Scholar
  10. 10.
    Tamura, J., Nakada, Y., Taniguchi, K., Yamane, M.: Synthesis of chondroitin sulfate E octasaccharide in a repeating region involving an acetamide auxiliary. Carbohydr. Res. 343, 39–47 (2008)CrossRefPubMedGoogle Scholar
  11. 11.
    Okamoto, R., Kajihara, Y.: Uncovering a latent ligation site for glycopeptide synthesis. Angew Chem. Int. Ed. 47, 5402–5406 (2008)CrossRefGoogle Scholar
  12. 12.
    Pozsgay, V., Vieira, N.E., Yergey, A.: A method for bioconjugation of carbohydrates using diels-alder cycloaddition. Org. Lett. 4, 3191–3194 (2002)CrossRefPubMedGoogle Scholar
  13. 13.
    Miller, J.S., Dudkin, V.Y., Lyon, G.J., Muir, T.W., Danishefsky, S.J.: Toward fully synthetic N-Linked glycoproteins. Angew Chem. Int. Ed. 42, 431–434 (2003)CrossRefGoogle Scholar
  14. 14.
    Herzner, H., Reipen, T., Schultz, M., Kunz, H.: Synthesis of glycopeptides containing carbohydrate and peptide recognition motifs. Chem. Rev. 100, 4495–4538 (2000)CrossRefPubMedGoogle Scholar
  15. 15.
    Grandjean, C., Boutonnier, A., Guerreiro, C., Fournier, J.M., Mulard, L.A.: On the preparation of carbohydrate-protein conjugates using the traceless staudinger ligation. J. Org. Chem. 70, 7123–7132 (2005)CrossRefPubMedGoogle Scholar
  16. 16.
    Wu, X., Bundle, D.R.: Synthesis of glycoconjugate vaccines for Candida albicans using novel linker methodology. J. Org. Chem. 70, 7381–7388 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    Yamamoto, K., Fujimori, K., Haneda, K., Mizuno, M., Inazu, T., Kumagai, H.: Chemoenzymatic synthesis of a novel glycopeptides using a microbial endoglycosidase. Carbohydr. Res. 305, 415–422 (1998)CrossRefGoogle Scholar
  18. 18.
    Yamamoto, N., Ohmori, Y., Sakakibara, T., Sasaki, K., Juneja, L.R., Kajihara, Y.: Solid-phase synthesis of sialylglycopeptides through selective esterification of the sialic acid residues of an asn-linked complex-type sialyloligosaccharide. Angew Chem. Int. Ed. 42, 2537–2540 (2003)CrossRefGoogle Scholar
  19. 19.
    Yamamoto, N., Sakakibara, T., Kajihara, Y.: Convenient synthesis of a glycopeptides analogue having a complex type disialyl-undecasaccharide. Tetrahedron Lett. 45, 3287–3290 (2004)CrossRefGoogle Scholar
  20. 20.
    Deangelis, P.L.: Evolution of glycosaminoglycans and their glycosyltransferases: implications for the extracellular matrices of animals and the capsules of pathogenic bacteria. Anat. Rec. 268, 317–326 (2002)CrossRefPubMedGoogle Scholar
  21. 21.
    Takagaki, K., Nakamura, T., Majima, M., Endo, M.: Isolation and characterization of a chondroitin sulfate-degrading endo-β-glucuronidase from rabbit liver. J. Biol. Chem. 263, 7000–7006 (1988)PubMedGoogle Scholar
  22. 22.
    Takagaki, K., Kon, A., Kawasaki, H., Nakamura, T., Tamura, S., Endo, M.: Isolation and characterization of Patnopecten mid-gut gland endo-β-xylosidase active on peptidochondroitin sulfate. J. Biol. Chem. 265, 854–860 (1990)PubMedGoogle Scholar
  23. 23.
    Takagaki, K., Nakamura, T., Takeda, Y., Daidouji, K., Endo, M.: A new endo-β-galactosidase acting on the Galβ1–3Gal linkage of the proteoglycan linkage region. J. Biol. Chem. 267, 18558–18563 (1992)PubMedGoogle Scholar
  24. 24.
    Takagaki, K., Ishido, K., Kakizaki, I., Iwafune, M., Endo, M.: Carriers for enzymatic attachment of glycosaminoglycan chains to peptide. Biochem. Biophys. Res. Commun. 293, 220–224 (2002)CrossRefPubMedGoogle Scholar
  25. 25.
    Yamaguchi, M., Kojima, K., Hayashi, N., Kakizaki, I., Kon, A., Takagaki, K.: Efficient and widely applicable method of constructing neo-proteoglycan utilizing copper(I) catalyzed 1, 3-dipolar cycloaddition. Tetrahedron Lett. 47, 7455–7458 (2006)CrossRefGoogle Scholar
  26. 26.
    Kon, A., Takagaki, K., Kawasaki, H., Nakamura, T., Endo, M.: Application of 2- aminopyridine fluorescence labeling to glycosaminoglycans. J. Biochem. 110, 132–135 (1991)PubMedGoogle Scholar
  27. 27.
    Kunishima, M., Kawachi, C., Monta, J., Terao, K., Iwasaki, F., Tani, S.: 4-(4, 6-dimethoxy-1, 3, 5-triazin-2-yl)-4-methyl-morpholinium chloride: an efficient condensing agent leading to the formation of amides and esters. Tetrahedron. 55, 13159–13170 (1999)CrossRefGoogle Scholar
  28. 28.
    Kolb, C.H., Sharpless, K.B.: The growing impact of click chemistry on drug discovery. DDT. 8, 1128–1137 (2003)PubMedGoogle Scholar
  29. 29.
    Lewis, W.G., Green, G., Grynszpan, F., Radic, Z., Carlier, P.R., Taylor, P., Finn, M.G., Sharpless, K.B.: Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew Chem. Int. Ed. 41, 1053–1057 (2002)Google Scholar
  30. 30.
    Rostovtsev, V.V., Green, G.L., Fokin, V.V., Sharpless, K.B.: A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective ligation of azides and terminal alkynes. Angew Chem. Int. Ed. 41, 2596–2599 (2002)CrossRefGoogle Scholar
  31. 31.
    Tornθe, C.W., Christensen, C., Meldal, M.: Peptidotriazoles on solid phase: [1, 2, 3]-triazoles by regiospecific copper(I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002)CrossRefGoogle Scholar
  32. 32.
    Molla, A., Yamamto, T., Maeda, H.: Characterization of 73 kDa Thiol Protease from Serratia marcescens and its effect on plasma proteins. J. Biochem. 104, 616–621 (1988)PubMedGoogle Scholar
  33. 33.
    Yamagata, T., Saito, H., Habuchi, O., Suzuki, S.: Purification and properties of bacterial chondroitinase and chondrosulfatases. J. Biol. Chem. 243, 1523–1535 (1968)PubMedGoogle Scholar
  34. 34.
    Saitoh, H., Takagaki, K., Majima, M., Nakamura, T., Matsuki, A., Kasai, M., Narita, H., Endo, M.: Enzymic reconstruction of glycosaminoglycan oligosaccharide chains using the transglycosylation reaction of bovine testicular hyaluronidase. J. Biol. Chem. 270, 3741–3747 (1995)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Masanori Yamaguchi
    • 1
    • 2
    Email author
  • Keiichi Takagaki
    • 2
  • Kaoru Kojima
    • 2
  • Naohiro Hayashi
    • 3
  • Fengchao Chen
    • 2
  • Ikuko Kakizaki
    • 2
  • Atsushi Kon
    • 2
  • Masahiko Endo
    • 2
  1. 1.Department of Organic Chemistry, Faculty of EducationWakayama UniversityWakayamaJapan
  2. 2.Department of Glycotechnology, Center for Advanced Medical ResearchHirosaki University Graduate School of MedicineHirosakiJapan
  3. 3.Otsuka Chemical Co., Ltd.TokushimaJapan

Personalised recommendations