Glycoconjugate Journal

, 26:1055 | Cite as

Identification of high-mannose and multiantennary complex-type N-linked glycans containing α-galactose epitopes from Nurse shark IgM heavy chain

  • David J. Harvey
  • Max Crispin
  • Beryl E. Moffatt
  • Sylvia L. Smith
  • Robert B. Sim
  • Pauline M. Rudd
  • Raymond A. Dwek
Article

Abstract

MALDI-TOF mass spectrometry, negative ion nano-electrospray MS/MS and exoglycosidase digestion were used to identify 36 N-linked glycans from 19S IgM heavy chain derived from the nurse shark (Ginglymostoma cirratum). The major glycan was the high-mannose compound, Man6GlcNAc2 accompanied by small amounts of Man5GlcNAc2, Man7GlcNAc2 and Man8GlcNAc2. Bi- and tri-antennary (isomer with a branched 3-antenna) complex-type glycans were also abundant, most contained a bisecting GlcNAc residue (β1→4-linked to the central mannose) and with varying numbers of α-galactose residues capping the antennae. Small amounts of monosialylated glycans were also found. This appears to be the first comprehensive study of glycosylation in this species of animal. The glycosylation pattern has implications for the mechanism of activation of the complement system by nurse shark IgM.

Keywords

Nurse shark N-Glycans MALDI mass spectrometry Negative ion fragmentation α-Galactose 

Abbreviations

ABS

Arthrobacter ureafaciens sialidase

BTG

bovine testis β-galactosidase

CBG

Green coffee-bean α-galactosidase

DHB

dihydroxybenzoic acid

dHex

deoxy-hexose

EDTA

ethylenediamine tetra-acetic acid

Gal

galactose

GlcNAc

N-acetylglucosamine

Hex

hexose

HexNAc

N-acetylhexosamine

IgM

immunoglobulin M

MALDI

matrix-assisted laser desorption/ionization

Man

mannose

MBL

mannose-binding lectin

MS

mass spectrometry

PAGE

polyacrylamide gel electrophoresis

PNGase

protein N-glycosidase

Q

quadrupole

SDS

sodium dodecylsulphate

SPH

Streptococcus pneumoniae β-N-acetylhexosaminidase

TOF

time-of-flight

References

  1. 1.
    Clem, I.W., Boutaud, F., Sigel, M.M.: Phylogeny of immunoglobulin structure and function. II. Immunoglobulins of the nurse shark. J. Immunol. 99, 1226–1235 (1967)PubMedGoogle Scholar
  2. 2.
    Rumfelt, L.L., Diaz, M., Lohr, R.L., Mochon, E., Flajnik, M.F.: Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish. J. Immunol. 173, 1129–1139 (2004)PubMedGoogle Scholar
  3. 3.
    Clerx, J.P.M., Castel, A., Bol, J.F., Gerwig, G.J.: Isolation and characterization of the immunoglobulin of pike (Esox lucius L.). Vet. Immunol. Immunopathol. 1, 125–144 (1980). doi:10.1016/0165-2427(80)90003-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Magnadóttir, B., Gudmundsdóttir, B.K., Gudmundsdóttir, S.: The carbohydrate moiety of IgM from Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. B 116, 423–430 (1997). doi:10.1016/S0305-0491(96)00264-7 CrossRefGoogle Scholar
  5. 5.
    Magnadóttir, B., Crispin, M., Royle, L., Colominas, C., Harvey, D.J., Dwek, R.A., Rudd, P.M.: The carbohydrate moiety of serum IgM from Atlantic cod (Gadus morhua L.). Fish Shellfish Immunol. 12, 209–227 (2002). doi:10.1006/fsim.2001.0364 CrossRefPubMedGoogle Scholar
  6. 6.
    Rumfelt, L.L., Avila, D., Diaz, M., Bartl, S., McKinney, E.C., Flajnik, M.F.: A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. Proc. Natl. Acad. Sci. USA 98, 1775–1780 (2001). doi:10.1073/pnas.98.4.1775 CrossRefPubMedGoogle Scholar
  7. 7.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: Part 1; Use of nitrate and other anionic adducts for the production of negative ion electrospray spectra from N-linked carbohydrates. J. Am. Soc. Mass Spectrom. 16, 622–630 (2005). doi:10.1016/j.jasms.2005.01.004 CrossRefPubMedGoogle Scholar
  8. 8.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: Part 2, Fragmentation of high-mannose N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 631–646 (2005). doi:10.1016/j.jasms.2005.01.005 CrossRefPubMedGoogle Scholar
  9. 9.
    Harvey, D.J.: Fragmentation of negative ions from carbohydrates: Part 3, Fragmentation of hybrid and complex N-linked glycans. J. Am. Soc. Mass Spectrom. 16, 647–659 (2005). doi:10.1016/j.jasms.2005.01.006 CrossRefPubMedGoogle Scholar
  10. 10.
    Dodds, A.W., Smith, S.L., Levine, R.P., Willis, A.C.: Isolation and initial characterisation of complement components C3 and C4 of the nurse shark and the channel catfish. Dev. Comp. Immunol. 22, 207–216 (1998). doi:10.1016/S0145-305X(98)00002-0 CrossRefPubMedGoogle Scholar
  11. 11.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970). doi:10.1038/227680a0 CrossRefPubMedGoogle Scholar
  12. 12.
    Fairbanks, G., Steck, T.L., Wallach, D.F.: Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10, 2606–2617 (1971). doi:10.1021/bi00789a030 CrossRefPubMedGoogle Scholar
  13. 13.
    Küster, B., Wheeler, S.F., Hunter, A.P., Dwek, R.A., Harvey, D.J.: Sequencing of N-linked oligosaccharides directly from protein gels: In-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high performance liquid chromatography. Anal. Biochem. 250, 82–101 (1997). doi:10.1006/abio.1997.2199 CrossRefPubMedGoogle Scholar
  14. 14.
    Börnsen, K.O., Mohr, M.D., Widmer, H.M.: Ion exchange and purification of carbohydrates on a Nafion(R) membrane as a new sample pretreatment for matrix-assisted laser desorption-ionization mass spectrometry. Rapid Commun. Mass Spectrom. 9, 1031–1034 (1995). doi:10.1002/rcm.1290091112 CrossRefGoogle Scholar
  15. 15.
    Sledge, C., Clem, L.W., Hood, L.: Antibody structure: amino terminal sequences of nurse shark light and heavy chains. J. Immunol. 112, 941–948 (1974)PubMedGoogle Scholar
  16. 16.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988). doi:10.1007/BF01049915 CrossRefGoogle Scholar
  17. 17.
    Magnadóttir, B.: Comparison of immunoglobulin (IgM) from four fish species. Icelandic Agric. Sci. 12, 47–59 (1998)Google Scholar
  18. 18.
    Tezuka, T., Taguchi, T., Kanamori, A., Muto, Y., Kitajima, K., Inoue, Y., Inoue, S.: Identification and structural determination of the KDN-containing N-linked glycan chains consisting of bi- and triantennary complex-type units of KDN-glycoprotein previously isolated from rainbow trout vitelline envelopes. Biochemistry 33, 6495–6502 (1994). doi:10.1021/bi00187a016 CrossRefPubMedGoogle Scholar
  19. 19.
    Smith, S.L.: Shark complement: an assessment. Immunol. Rev. 166, 67–78 (1998). doi:10.1111/j.1600-065X.1998.tb01253.x CrossRefPubMedGoogle Scholar
  20. 20.
    Duncan, A.R., Winter, G.: The binding site for C1q on IgG. Nature 332, 738–740 (1988). doi:10.1038/332738a0 CrossRefPubMedGoogle Scholar
  21. 21.
    Matsushita, M., Matsushita, A., Endo, Y., Nakata, M., Kojima, N., Mizuochi, T., Fujita, T.: Origin of the classical complement pathway: Lamprey orthologue of mammalian C1q acts as a lectin. Proc. Natl. Acad. Sci. USA 101, 10127–10131 (2004). doi:10.1073/pnas.0402180101 CrossRefPubMedGoogle Scholar
  22. 22.
    Arnold, J.N., Wormald, M.R., Sim, R.B., Rudd, P.M., Dwek, R.A.: The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu. Rev. Immunol. 25, 21–50 (2007). doi:10.1146/annurev.immunol.25.022106.141702 CrossRefPubMedGoogle Scholar
  23. 23.
    Takahashi, M., Iwaki, D., Matsushita, A., Nakata, M., Matsushita, M., Endo, Y., Fujita, T.: Cloning and characterization of mannose-binding lectin from lamprey (Agnathans). J. Immunol. 176, 4861–4868 (2006)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David J. Harvey
    • 1
  • Max Crispin
    • 2
  • Beryl E. Moffatt
    • 3
  • Sylvia L. Smith
    • 4
  • Robert B. Sim
    • 3
  • Pauline M. Rudd
    • 5
  • Raymond A. Dwek
    • 1
  1. 1.Oxford Glycobiology Institute, Department of BiochemistryUniversity of OxfordOxfordUK
  2. 2.Division of Structural Biology, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
  3. 3.MRC Immunochemistry Unit, Department of BiochemistryUniversity of OxfordOxfordUK
  4. 4.Department of Biological SciencesFlorida International UniversityMiamiUSA
  5. 5.National Institute for Bioprocessing, Research and Training (NIBRT), Conway InstituteUniversity College DublinDublin 4Ireland

Personalised recommendations