Glycoconjugate Journal

, Volume 26, Issue 6, pp 635–645

Cloning and expression of mannosylphospho dolichol synthase from bovine adrenal medullary capillary endothelial cells

  • Krishna Baksi
  • Zhenbo Zhang
  • Aditi Banerjee
  • Dipak K. Banerjee


Mannosylphospho dolichol synthase (DPMS) is a critical enzyme in the biosynthesis of lipid-linked oligosaccharide (LLO; Glc3Man9GlcNAc2-PP-Dol), a pre-requisite for asparagine-linked (N-linked) protein glycosylation. We have shown earlier that DPMS is important for angiogenesis, i.e., endothelial cell proliferation. This is true when cAMP is used for intracellular signaling. During cAMP signaling, DPMS is activated and ER stress is reduced. To understand the activation of DPMS at the molecular level we have isolated a cDNA clone for the DPMS gene (bDPMS) from the capillary endothelial cells of bovine adrenal medulla. DNA sequencing and the deduced amino acid sequence have established that bDPMS has a motif to be phosphorylated by cAMP-dependent protein kinase (PKA). Based on the sequence information Serine 165 has been found to be the phosphorylation target in bDPMS. Hydropathy Index when plotted against amino acid number indicates the presence of a hydrophobic region around the amino acid residues 120–160, supporting that bDPMS has one membrane spanning region. The recombinant bDPMS has now been purified as His-tag protein with an apparent molecular weight of Mr 33 kDa. Additionally, we show here that overexpression of DPMS is indeed angiogenic. The capillary endothelial cells proliferate at a higher rate carrying the DPMS overexpression plasmid over the parental cells or the vector.


Angiogenesis Mannosylphospho dolichol synthase EC 2.41.83 cAMP Lipid-linked oligosaccharide N-linked glycoprotein Breast cancer 



minimal essential medium with Earle’s salt




Nonident P-40


adenosine 3′,5′-cyclic monophosphate


ribonucleic acid


messenger ribonucleic acid


deoxyriboynucleic acid


cAMP-dependent protein kianse


endoplasmic reticulum


mannosylphospho dolichol synthase


polymerase chain reaction


reverse transcription-polymerase chain reaction


ethylenediamine tetraacetic acid




guanosine diphosphate




dolichyl monophosphate


dimethyl sulfoxide


sodium dodecylsulfate


polyacrylamide gel electrophoresis


lipid-linked oligosaccharide



  1. 1.
    Kornfeld, R., Kornfeld, S.: Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985)PubMedCrossRefGoogle Scholar
  2. 2.
    Tannner, W., Lehle, L.: Protein glycosylation in yeast. Biochim. Biophys. Acta 906, 81–99 (1987)Google Scholar
  3. 3.
    Orlean, P.: Dolichol phosphate mannose synthase is required in vivo for glycosyl phosphatidylinositol membrane anchoring, O mannosylation, and N glycosylation of protein in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 5796–5806 (1990)PubMedGoogle Scholar
  4. 4.
    Menon, A.K., Mayor, S., Schwarz, R.T.: Biosynthesis of glycosylphosphatidylinositol lipids in Trypanosoma brucei: involvement of mannosylphosphoryldolichol as the mannose donor. EMBO J. 9, 4249–4258 (1990)PubMedGoogle Scholar
  5. 5.
    Englund, P.T.: The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors. Annu. Rev. Biochem. 62, 121–138 (1993)PubMedCrossRefGoogle Scholar
  6. 6.
    Herscovics, A., Orlean, P.: Glycoprotein biosynthesis in yeast. FASEB J. 7, 540–550 (1993)PubMedGoogle Scholar
  7. 7.
    Doucey, M.A., Hess, D., Cacan, R., Hofsteenge, J.: Protein C-mannosylation is enzyme-catalysed and uses dolichyl-phosphate-mannose as a precursor. Mol. Biol. Cell 9, 291–300 (1998)PubMedGoogle Scholar
  8. 8.
    Clarke, B.L., Naylor, C., Lennarz, W.J.: Comparative studies on mannosylphosphoryl dolichol and glucosylphosphoryl dolichol synthases. Chem. Phys. Lipid 51, 239–247 (1989)CrossRefGoogle Scholar
  9. 9.
    Hirschberg, C.B., Snider, M.D.: Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu. Rev. Biochem. 56, 63–87 (1987)PubMedCrossRefGoogle Scholar
  10. 10.
    Abeijon, C., Hirschberg, C.B.: Topography of glycosylation reactions in the endoplasmic reticulum. Trends Biol. Sci. 17, 32–36 (1992)CrossRefGoogle Scholar
  11. 11.
    Kean, E.L., Rush, J.S., Waechter, C.J.: Activation of GlcNAc-P-Pdolichol synthesis by mannosylphosphoryldolichol is stereospecific and requires a saturated alpha-isoprene unit. Biochemistry 33, 10508–10512 (1994)PubMedCrossRefGoogle Scholar
  12. 12.
    Orlean, P., Albright, C., Robbins, P.W.: Cloning and sequencing of the yeast gene for dolichol phosphate mannose synthase, an essential protein. J. Biol .Chem. 263, 17499–17507 (1988)PubMedGoogle Scholar
  13. 13.
    Marquardt, T., Denecke, J.: Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur. J. Pediatr. 162, 359–379 (2003)PubMedGoogle Scholar
  14. 14.
    Kim, S., Westphal, V., Srikrishna, G., Mehta, D.P., Peterson, S., Filiano, J., Karnes, P.S., Patterson, M.C., Freeze, H.H.: Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie). J. Clin. Invest. 105, 191–198 (2000)PubMedCrossRefGoogle Scholar
  15. 15.
    Nozaki, M., Ohishi, K., Yamada, N., Kinoshita, T., Nagy, A., Takeda, J.: Developmental abnormalities of glycosylphosphatidylinositol-anchor deficient embryos revealed by Cre/loxP system. Lab. Invest. 79, 293–299 (1999)PubMedGoogle Scholar
  16. 16.
    Chapman, A., Trowbridge, I.S., Hyman, R., Kornfeld, S.: Structure of the lipid-linked oligosaccharides that accumulate in class E Thy-1-negative mutant lymphomas. Cell 17, 509–515 (1979)PubMedCrossRefGoogle Scholar
  17. 17.
    Mazhar-Tabrizi, R., Eckert, V., Blank, M., Muller, R., Mumberg, D., Funk, M., Schwarz, R.T.: Cloning and functional expression of glycosyltransferases from parasitic protozoans by heterologous complementation in yeast: the dolichol phosphate mannose synthase from Trypanosoma brucei brucei. Biochem. J. 316, 853–858 (1996)Google Scholar
  18. 18.
    Zimmerman, J.W., Specht, C.A., Ceganes, B.X., Robbins, P.W.: The isolation of a Dol-P-Man synthase from Ustilago maydis that functions in Saccharomyces cerevisiae. Yeast 12, 765–771 (1996)PubMedCrossRefGoogle Scholar
  19. 19.
    Colussi, P.A., Taron, C.H., Mack, J.C., Orlean, P.: Human and Saccharomyces cerevisiae dolichol phosphate mannose synthases represent two classes of the enzyme, but both function in Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. USA 94, 7873–7878 (1997)PubMedCrossRefGoogle Scholar
  20. 20.
    Ilgoutz, S.C., Zawadzki, J.L., Ralton, J.E., McConville, M.J.: Evidence that free GPI glycolipids are essential for growth of Leishmania mexicana. EMBO J. 18, 2746–2755 (1999)PubMedCrossRefGoogle Scholar
  21. 21.
    Tomita, S., Inoue, N., Maeda, Y., Ohishi, K., Takeda, J., Kinoshita, T.: A homologue of Saccharomyces cerevisiae Dpm1p is not sufficient for synthesis of dolichol-phosphate-mannose in mammalian cells. J. Biol. Chem. 273, 9249–9254 (1998)PubMedCrossRefGoogle Scholar
  22. 22.
    Maeda, Y., Tomita, S., Watanabe, R., Ohishi, K., Kinoshita, T.: DPM2 regulates biosynthesis of dolichol phosphate-mannose in mammalian cells: correct subcellular localization and stabilization of DPM1, and binding of dolichol phosphate. EMBO J. 17, 4920–4929 (1998)PubMedCrossRefGoogle Scholar
  23. 23.
    Maeda, Y., Tanaka, S., Hino, J., Kanagawa, K., Kinoshita, T.: Human dolichol-phosphate-mannose synthase consists of three subunits, DPM1, DPM2 and DPM3. EMBO J. 19, 2475–2482 (2000)PubMedCrossRefGoogle Scholar
  24. 24.
    Banerjee, D.K., Martínez, J.A., Baksi, K.: Significance of protein N-glycosylation in breast tumor angiogenesis. In: Maragoudakis, M.E., Papadimitriou, E. (eds.) Angiogenesis: Basic Science and Clinical Applications, pp. 287–308. Transworld Research Network, Trivandrum, Kerala, India (2007)Google Scholar
  25. 25.
    Banerjee, D.K., Oliveira, C.M., Tavárez, J.J., Katiyar, V.N., Saha, S., Martínez, J.A., Banerjee, A., Sánchez, A. Baksi, K.: Importance of a Factor VIIIc-like Glycoprotein Expressed in Capillary Endothelial Cells (eFactor VIIIc) in Angiogenesis. In: Molecular Immunology of Complex Carbohydrates III (ed. Albert Wu). (In Press) (2009)Google Scholar
  26. 26.
    Banerjee, D.K., Tavárez, J.J., Oliveira, C.M.: Expression of blood clotting factor VIII: C gene in capillary endothelial cells. FEBS Lett. 306, 33–37 (1992)PubMedCrossRefGoogle Scholar
  27. 27.
    Martínez, J.A., Torres-Negrón, I., Amigó, L.A., Banerjee, D.K.: Expression of Glc3Man9GlcNAc2-PP-Dol is a prerequisite for capillary endothelial cell proliferation. Cell Mol Biol (Noisy-le-grand) 45, 137–152 (1999)Google Scholar
  28. 28.
    Baksi, K., Tavárez-Pagán, J.J., Martínez, J.A., Banerjee, D.K.: Unique structural motif supports mannosylphospho dolichol synthase:) an important angiogenesis regulator. Current Drug Targets 9, 262–271 (2008)PubMedCrossRefGoogle Scholar
  29. 29.
    Banerjee, D.K., Ornberg, R.L., Youdim, M.B., Heldman, E., Pollard, H.B.: Endothelial cells from bovine adrenal medulla develop capillary-like growth patterns in culture. Proc. Natl. Acad. Sci. USA 82, 4702–4706 (1985)PubMedCrossRefGoogle Scholar
  30. 30.
    Maniatis, T.; Fritsch, E.F., Sambrook, J.: In molecular cloning: a laboratory manual, Cold Spring Harbor laboratory, Cold Spring Harbor, New York, (1982)Google Scholar
  31. 31.
    Banerjee, D.K., Kousvelari, E.E., Baum, B.J.: cAMP-mediated protein phosphorylation of microsomal membranes increases mannosylphosphodolichol synthase activity. Proc. Natl. Acad. Sci. USA 84, 6389–6393 (1987)PubMedCrossRefGoogle Scholar
  32. 32.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)PubMedCrossRefGoogle Scholar
  33. 33.
    Sanger, F., Nicklen, S., Coulson, A.R.: DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467 (1977)PubMedCrossRefGoogle Scholar
  34. 34.
    Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)PubMedCrossRefGoogle Scholar
  35. 35.
    Banerjee, D.K., Carrasquillo, E.A., Hughey, P., Schutzbach, J.S., Martínez, J.A., Baksi, K.: In vitro phosphorylation by cAMP-dependent protein kinase up-regulates recombinant Saccharomyces cerevisiae mannosylphosphodolichol synthase. J. Biol. Chem. 280, 4174–4181 (2005)PubMedCrossRefGoogle Scholar
  36. 36.
    Banerjee, D.K., Vendrell-Ramos, M.: Is asparagine-linked protein glycosylation and obligatory requirement for angiogenesis? Indian J. Biochem. Biophys. 30, 389–394 (1993)PubMedGoogle Scholar
  37. 37.
    Banerjee, D.K., DaSilva, J.J., Bigio, B.: Mannosylphosphodolichol synthase activity is associated with a 32 kDa phosphoprotein. Bioscience Report 19, 169–177 (1999)CrossRefGoogle Scholar
  38. 38.
    Banerjee, D.K., Aponte, E., DaSilva, J.J.: Low expression of lipid-linked oligosaccharide due to a functionally altered Dol-P-Man synthase reduces protein glycosylation in cAMP-dependent protein kinase deficient Chinese hamster ovary cells. Glycoconj. J. 21, 479–486 (2004)PubMedCrossRefGoogle Scholar
  39. 39.
    Martínez, J.A., Tavárez, J.J., Oliveira, C.M., Banerjee, D.K.: Potentiation of angiogenic switch in capillary endothelial cells by cAMP: a crosstalk between up-regulated LLO biosynthesis and the HSP-70 expression. Glycoconj. J. 21, 209–220 (2006)CrossRefGoogle Scholar
  40. 40.
    Banerjee, D.K.: Requirement of protein kinase type I for cAMP-mediated up-regulation of lipid-linked oligosaccharide for asparagine-linked protein glycosylation. Cell. Mol. Biol. (Noisy-le-grand) 53, 55–63 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Krishna Baksi
    • 1
  • Zhenbo Zhang
    • 2
  • Aditi Banerjee
    • 2
  • Dipak K. Banerjee
    • 2
  1. 1.Department of Anatomy and Cell Biology, School of MedicineUniversidad Central del CaribeBayamónUSA
  2. 2.Department of Biochemistry, School of MedicineUniversity of Puerto RicoSan JuanUSA

Personalised recommendations