Skip to main content
Log in

N-glycan trimming by glucosidase II is essential for Arabidopsis development

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

An Erratum to this article was published on 13 January 2009

Abstract

Glucosidase II, one of the early N-glycan processing enzymes and a major player in the glycoprotein folding quality control, has been described as a soluble heterodimer composed of α and β subunits. Here we present the first characterization of a plant glucosidase II α subunit at the molecular level. Expression of the Arabidopsis α subunit restored N-glycan maturation capacity in Schizosaccharomyces pombe α− or αβ−deficient mutants, but with a lower efficiency in the last case. Inactivation of the α subunit in a temperature sensitive Arabidopsis mutant blocked N-glycan processing after a first trimming by glucosidase I and strongly affected seedling development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7

Similar content being viewed by others

Abbreviations

At:

Arabidopsis thaliana

CNX:

calnexin

ConA:

concanavalin A

CRT:

calreticulin

Endo H:

endo-β-N-acetylglucosaminidase H

ER:

endoplasmic reticulum

GCS:

glucosidase

TFA:

trifluoracetic acid

References

  1. Kornfeld, R., Kornfeld, S.: Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664 (1985). doi:10.1146/annurev.bi.54.070185.003215

    Article  PubMed  CAS  Google Scholar 

  2. Moremen, K.W., Trimble, R.B., Herscovics, A.: Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology 4, 113–125 (1994). doi:10.1093/glycob/4.2.113

    Article  PubMed  CAS  Google Scholar 

  3. Ellgaard, L., Helenius, A.: Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell Biol. 4, 181–191 (2003). doi:10.1038/nrm1052

    Article  PubMed  CAS  Google Scholar 

  4. Helenius, A., Aebi, M.: Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004). doi:10.1146/annurev.biochem.73.011303.073752

    Article  PubMed  CAS  Google Scholar 

  5. Moremen, K.W., Molinari, M.: N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr. Opin. Struct. Biol. 16, 592–599 (2006). doi:10.1016/j.sbi.2006.08.005

    Article  PubMed  CAS  Google Scholar 

  6. Trombetta, E.S., Simons, J.F., Helenius, A.: Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J. Biol. Chem. 271, 27509–27516 (1996). doi:10.1074/jbc.271.44.27509

    Article  PubMed  CAS  Google Scholar 

  7. Hentges, A., Bause, E.: Affinity purification and characterization of glucosidase II from pig liver. Biol. Chem. 378, 1031–1038 (1997)

    Article  PubMed  CAS  Google Scholar 

  8. D’Alessio, C., Fernandez, F., Trombetta, E.S., Parodi, A.J.: Genetic evidence for the heterodimeric structure of glucosidase II. The effect of disrupting the subunit-encoding genes on glycoprotein folding. J. Biol. Chem. 274, 25899–25905 (1999). doi:10.1074/jbc.274.36.25899

    Article  PubMed  Google Scholar 

  9. Henrissat, B., Davies, G.: Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7, 637–644 (1997). doi:10.1016/S0959-440X(97)80072-3

    Article  PubMed  CAS  Google Scholar 

  10. Henrissat, B., Romeu, A.: Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem. J. 311, 350–351 (1995)

    PubMed  CAS  Google Scholar 

  11. Henrissat, B., Bairoch, A.: New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293, 781–788 (1993)

    PubMed  CAS  Google Scholar 

  12. Lucocq, J.M., Brada, D., Roth, J.: Immunolocalization of the oligosaccharide trimming enzyme glucosidase II. J. Cell Biol. 102, 2137–2146 (1986). doi:10.1083/jcb.102.6.2137

    Article  PubMed  CAS  Google Scholar 

  13. Arendt, C.W., Ostergaard, H.L.: Identification of the CD45-associated 116-kDa and 80-kDa proteins as the alpha- and beta-subunits of alpha-glucosidase II. J. Biol. Chem. 272, 13117–13125 (1997). doi:10.1074/jbc.272.20.13117

    Article  PubMed  CAS  Google Scholar 

  14. Flura, T., Brada, D., Ziak, M., Roth, J.: Expression of a cDNA encoding the glucose trimming enzyme glucosidase II in CHO cells and molecular characterization of the enzyme deficiency in a mutant mouse lymphoma cell line. Glycobiology 7, 617–624 (1997). doi:10.1093/glycob/7.5.617

    Article  PubMed  CAS  Google Scholar 

  15. Trombetta, S.E., Fleming, K.G., Helenius, A.: Quaternary and domain structure of glycoprotein processing glucosidase II. Biochem. 40, 10717–10722 (2001). doi:10.1021/bi010629u

    Article  CAS  Google Scholar 

  16. Treml, K., Meimaroglou, D., Hentges, A., Bause, E.: The alpha- and beta-subunits are required for expression of catalytic activity in the hetero-dimeric glucosidase II complex from human liver. Glycobiology 10, 493–502 (2000). doi:10.1093/glycob/10.5.493

    Article  PubMed  CAS  Google Scholar 

  17. Pelletier, M.F., Marcil, A., Sevigny, G., Jakob, C.A., Tessier, D.C., Chevet, E., Menard, R., Bergeron, J.J.M., Thomas, D.Y.: The heterodimeric structure of glucosidase II is required for its activity, solubility, and localization in vivo. Glycobiology 10, 815–827 (2000). doi:10.1093/glycob/10.8.815

    Article  PubMed  CAS  Google Scholar 

  18. Wilkinson, B.M., Purswani, J., Stirling, C.J.: Yeast GTB1 Encodes a subunit of glucosidase II required for glycoprotein processing in the endoplasmic reticulum. J. Biol. Chem. 281, 6325–6333 (2006). doi:10.1074/jbc.M510455200

    Article  PubMed  CAS  Google Scholar 

  19. Kaushal, G.P., Pastuszak, I., Hatanaka, K., Elbein, A.D.: Purification to homogeneity and properties of glucosidase II from mung bean seedlings and suspension-cultured soybean cells. J. Biol. Chem. 265, 16271–16279 (1990)

    PubMed  CAS  Google Scholar 

  20. Forsburg, S.L.: Comparison of Schizosaccharomyces pombe expression systems. Nucleic Acids Res. 21, 2955–2956 (1993). doi:10.1093/nar/21.12.2955

    Article  PubMed  CAS  Google Scholar 

  21. Alfa, C., Fantes, P., Hyams, J., McLeod, M., Wabrik, E.: Experiments with fission yeast: A laboratory manual, pp. 133–136. Cold Spring Harbor Laboratory, New York (1993). ISBN 0 87969 424 6

    Google Scholar 

  22. Moreno, S., Klar, A., Nurse, P.: Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991). doi:10.1016/0076-6879(91)94059-L

    Article  PubMed  CAS  Google Scholar 

  23. Fernandez, F., D’Alessio, C., Fanchiotti, S., Parodi, A.J.: A misfolded protein conformation is not a sufficient condition for in vivo glucosylation by the UDP-Glc:glycoprotein glucosyltransferase. EMBO J. 17, 5877–5886 (1998). doi:10.1093/emboj/17.20.5877

    Article  PubMed  CAS  Google Scholar 

  24. D’Alessio, C., Trombetta, E.S., Parodi, A.J.: Nucleoside diphosphatase and glycosyltransferase activities can localize to different subcellular compartments in Schizosaccharomyces pombe. J. Biol. Chem. 278, 22379–22387 (2003). doi:10.1074/jbc.M300892200

    Article  CAS  Google Scholar 

  25. Fernandez, F.S., Trombetta, E.S., Hellman, U., Parodi, A.J.: Purification to homogeneity of UDP-glucose:glycoprotein glucosyltransferase from Schizosaccharomyces pombe and apparent absence of the enzyme from Saccharomyces cerevisiae. J. Biol. Chem. 269, 30701–30706 (1994)

    PubMed  CAS  Google Scholar 

  26. Laemmli, U.: Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227, 680–685 (1970). doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  27. Blum, H., Beier, H., Gross, H.J.: Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99 (1987). doi:10.1002/elps.1150080203

    Article  CAS  Google Scholar 

  28. Faye, L., Gomord, V., Fitchette-Laine, A.-C., Chrispeels, M.J.: Affinity purification of antibodies specific for Asn-linked glycans containing [alpha]1 –> 3 fucose or [beta]1 –> 2 xylose. Anal. Biochem. 209, 104–108 (1993). doi:10.1006/abio.1993.1088

    Article  PubMed  CAS  Google Scholar 

  29. Faye, L., Chrispeels, M.J.: Characterization of N-linked oligosaccharides by affinoblotting with concanavalin A-peroxidase and treatment of the blots with glycosidases. Anal. Biochem. 149, 218–224 (1985). doi:10.1016/0003-2697(85)90498-1

    Article  PubMed  CAS  Google Scholar 

  30. Abe, H., Shimma, Y., Jigami, Y.: In vitro oligosaccharide synthesis using intact yeast cells that display glycosyltransferases at the cell surface through cell wall-anchored protein Pir. Glycobiology 13, 87–95 (2003). doi:10.1093/glycob/cwg014

    Article  PubMed  CAS  Google Scholar 

  31. Harvey, D.J.: Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 18, 349–450 (1999). doi:10.1002/(SICI)1098-2787(1999)18:6<349::AID-MAS1>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  32. Bakker, H., Bardor, M., Molthoff, J.O., Gomord, V., Elbers, I., Stevens, L.H., Jordi, W., Lommen, A., Faye, L., Lerouge, P., Bosch, D.: Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. Sci. U S A. 98, 2899–2904 (2001). doi:10.1073/pnas.031419998

    Article  PubMed  CAS  Google Scholar 

  33. Freeze, H.H., Lammertz, M., Iranfar, N., Fuller, D., Panneerselvam, K., Loomis, W.F.: "Consequences of disrupting the gene that encodes α-glucosidase II in the N-linked oligosaccharide biosynthesis pathway of Dictyostelium discoideum. Dev. Genet. 21, 177–186 (1997)

    Article  PubMed  CAS  Google Scholar 

  34. Geysens, S., Pakula, T., Uusitalo, J., Dewerte, I., Penttila, M., Contreras, R.: “Cloning and characterization of the glucosidase II alpha subunit gene of Trichoderma reesei: a frameshift mutation results in the aberrant glycosylation profile of the hypercellulolytic strain Rut-C30. Appl. Environ. Microbiol. 71, 2910–2924 (2005). doi:10.1128/AEM.71.6.2910-2924.2005

    Article  CAS  Google Scholar 

  35. Taylor, M.A., Ross, H.A., McRae, D., Stewart, D., Roberts, I., Duncan, G., Wright, F., Millam, S., Davies, H.V.: A potato alpha-glucosidase gene encodes a glycoprotein-processing alpha-glucosidase II-like activity. Demonstration of enzyme activity and effects of down-regulation in transgenic plants. Plant J. 24, 305–316 (2000). doi:10.1046/j.1365-313x.2000.00873.x

    Article  PubMed  CAS  Google Scholar 

  36. Kaushal, G.P., Zeng, Y., Elbein, A.D.: Biosynthesis of glucosidase II in suspension-cultured soybean cells. J. Biol. Chem. 268, 14536–14542 (1993)

    PubMed  CAS  Google Scholar 

  37. Burn, J.E., Hurley, U.A., Birch, R.J., Arioli, T., Cork, A., Williamson, R.E.: The cellulose-deficient Arabidopsis mutant rsw3 is defective in a gene encoding a putative glucosidase II, an enzyme processing N-glycans during ER quality control. Plant J. 32, 949–960 (2002). doi:10.1046/j.1365-313X.2002.01483.x

    Article  PubMed  CAS  Google Scholar 

  38. Fujimoto, K., Kornfeld, R.: alpha-Glucosidase II-deficient cells use endo alpha-mannosidase as a bypass route for N-linked oligosaccharide processing. J. Biol. Chem. 266, 3571–3578 (1991)

    PubMed  CAS  Google Scholar 

  39. Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fitchette-Laine, A.-C., Gomord, V., Faye, L.: N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol. 38, 31–48 (1998). doi:10.1023/A:1006012005654

    Article  PubMed  CAS  Google Scholar 

  40. Boisson, M., Gomord, V., Audran, C., Berger, N., Dubreucq, B., Granier, F., Lerouge, P., Faye, L., Caboche, M., Lepiniec, L.: Arabidopsis glucosidase I mutants reveal a critical role of N-glycan trimming in seed development. EMBO J. 20, 1010–1019 (2001). doi:10.1093/emboj/20.5.1010

    Article  PubMed  CAS  Google Scholar 

  41. Dairaku, K., Spiro, R.G.: Phylogenetic survey of endomannosidase indicates late evolutionary appearance of this N-linked oligosaccharide processing enzyme. Glycobiology 7, 579–586 (1997). doi:10.1093/glycob/7.4.579

    Article  PubMed  CAS  Google Scholar 

  42. Hammond, C., Braakman, I., Helenius, A.: Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc. Natl. Acad. Sci. U S A. 91, 913–917 (1994). doi:10.1073/pnas.91.3.913

    Article  PubMed  CAS  Google Scholar 

  43. Zhang, J.X., Braakman, I., Matlack, K.E., Helenius, A.: Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol. Biol. Cell 8, 1943–1954 (1997)

    PubMed  CAS  Google Scholar 

  44. Fanchiotti, S., Fernandez, F., D’Alessio, C., Parodi, A.J.: The UDP-Glc:glycoprotein glucosyltransferase is essential for Schizosaccharomyces pombe viability under conditions of extreme endoplasmic eeticulum stress. J. Cell Biol. 143, 625–635 (1998). doi:10.1083/jcb.143.3.625

    Article  PubMed  CAS  Google Scholar 

  45. Gillmor, S., Poindexter, P., Lorieau, J., Palcic, M.M., Somerville, C.: α-Glucosidase I is required for cellulose biosynthesis and morphogenesis in Arabidopsis. J. Cell Biol. 156, 1003–1013 (2002). doi:10.1083/jcb.200111093

    Article  PubMed  CAS  Google Scholar 

  46. von Schaewen, A., Sturm, A., O’Neill, J., Chrispeels, M.J.: Isolation of a mutant Arabidopsis plant that lacks N-acetyl glucosaminyl transferase I and is unable to synthesize Golgi-modified complex N-linked glycans. Plant Physiol. 102, 1109–1118 (1992). doi:10.1104/pp.102.4.1109

    Article  Google Scholar 

  47. Strasser, R., Altmann, F., Mach, L., Glössl, J., Steinkellner, H.: Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett. 561, 132–136 (2004). doi:10.1016/S0014-5793(04)00150-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the Centre National de la Recherche Scientifique (CNRS) and the French Ministère de la Recherche to VG and by an Australian Research Council grant to RW. P. Soussilane was supported by a fellowship from MIIAT-BP. T. Paccalet was supported by a post-doctoral fellowship from CNRS (VG191063200). Work in Argentina was supported by the NIH (USA) (Grant GM044500), by the Howard Hughes Medical Institute and by the National Agency for the Promotion of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Gomord.

Additional information

Cecilia D’Alessio and Thomas Paccalet have equal contributions to this work

An erratum to this article can be found at http://dx.doi.org/10.1007/s10719-008-9225-6

Electronic Supplementary Material

Below is the link to the electronic supplementary material

ESM 1

(58.5 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soussillane, P., D’Alessio, C., Paccalet, T. et al. N-glycan trimming by glucosidase II is essential for Arabidopsis development. Glycoconj J 26, 597–607 (2009). https://doi.org/10.1007/s10719-008-9201-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9201-1

Keywords

Navigation