Glycoconjugate Journal

, Volume 26, Issue 4, pp 495–510

C1-/C2-aromatic-imino-glyco-conjugates: experimental and computational studies of binding, inhibition and docking aspects towards glycosidases isolated from soybean and jack bean

  • Amit Kumar
  • Nitin K. Singhal
  • Balaji Ramanujam
  • Atanu Mitra
  • Nagender R. Rameshwaram
  • Siva K. Nadimpalli
  • Chebrolu P. Rao
Article

Abstract

Several C1-imino conjugates of d-galactose, d-lactose and d-ribose, where the nitrogen center was substituted by the salicylidene or naphthylidene, were synthesized and characterized. Similar C2-imino conjugates of d-glucose have also been synthesized. All the glyco-imino-conjugates, which are transition state analogues, exhibited 100% inhibition of the activity towards glycosidases extracted from soybean and jack bean meal. Among these, a galactosyl-napthyl-imine-conjugate (1c) showed 50% inhibition of the activity of pure α-mannosidase from jack bean at 22 ± 2.5 μM, and a ribosyl-naphthyl-imine-conjugate (3c) showed at 31 ± 5.5 μM and hence these conjugates are potent inhibitors of glycosidases. The kinetic studies suggested non-competitive inhibition by these conjugates. The studies are also suggestive of the involvement of aromatic, imine and carbohydrate moieties of the glyco-imino-conjugates in the effective inhibition. The binding of glyco-imino-conjugate has been established by extensive studies carried out using fluorescence emission and isothermal titration calorimetry. The conformational changes resulted in the enzyme upon interaction of these derivatives has been established by studying the fluorescence quench of the enzyme by KI as well as from the secondary structural changes noticed in CD spectra. All these studies revealed the difference in the binding strengths of the naphthylidene vs. salicylidene as well as galactosyl vs. lactosyl moieties present in these conjugates. The differential inhibition of these glyco-conjugates has been addressed by quantifying the specific interactions present between the glyco-conjugates and the enzyme by using rigid docking studies.

Keywords

C1-/C2-aromatic-imino-glyco-conjugates Glycosidase inhibition Pure α-mannosidase Rigid docking Fluorescence quenching Glycosidases from soybean and jack bean 

Supplementary material

10719_2008_9199_MOESM1_ESM.pdf (734 kb)
ESM 1Spectra for the glyco-conjugates (SI 01); enzyme assay (SI 02), enzyme inhibition data (SI 03), kinetics of inhibition (SI 04); fluorescence data (SI 05 & SI 06); CD spectra (SI 07); docked data (SI 08) (PDF 734 KB)

References

  1. 1.
    Hirsch, C., Bolm, D.I., Polegh, H.L.: A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J. 22, 1036–1046 (2003). doi:10.1093/emboj/cdg107 PubMedCrossRefGoogle Scholar
  2. 2.
    Movsichoff, F., Castro, O.A., Parodi, A.: Characterization of schizosaccharo-myces pombe ER α-mannosidase: A reevaluation of the role of the enzyme on ER-associated degradation. J. Mol. Biol. Cell 16, 4714–4724 (2005). doi:10.1091/mbc.E05-03-0246 CrossRefGoogle Scholar
  3. 3.
    Tokunaga, F., Brostrom, C., Koide, T., Arvan, P.: Endoplasmic reticulum (ER)-associated degradation of misfolded n-linked glycoproteins is suppressed upon inhibition of ER mannosidase I. J. Biol. Chem. 275, 40757–40764 (2000). doi:10.1074/jbc.M001073200 PubMedCrossRefGoogle Scholar
  4. 4.
    Niwa, T., Tsuruoka, T., Goi, H., Kodama, Y., Itoh, J., Inouye, S., Yamada, Y., Niida, T., Nobe, M., Ogawa, Y.: Novel glycosidase inhibitors, nojirimycin b and d-mannonic-δ-lactam isolation, structure determination and biological property. J. Antibiot. 37, 1579–1586 (1984)PubMedGoogle Scholar
  5. 5.
    Leroy, E., Reymond, J.L.: Anomer-selective inhibition of glycosidases using aminocyclopentanols. Org. Lett. 1, 775–777 (1999). doi:10.1021/ol990754 m PubMedCrossRefGoogle Scholar
  6. 6.
    Boss, O., Leroy, E., Blaser, A., Reymond, J.L.: Synthesis and evaluation of aminocyclopentitol inhibitors of β-glucosidases. Org. Lett. 2, 151–154 (2000). doi:10.1021/ol991252b PubMedCrossRefGoogle Scholar
  7. 7.
    Kleban, M., Hilgers, P., Greul, J.N., Kugler, R.D., Li, J., Picasso, S., Vogel, P., Jager, V.: Syntheses via isoxazolines, part 25. Amino(hydroxymethyl)cyclo-pentanetriols, an emerging class of potent glycosidase inhibitors—Part I: synthesis and evaluation of β-d-pyranoside analogues in the manno, gluco, galacto, and GlcNAc series. ChemBioChem 2, 365–368 (2001). doi:10.1002/1439-7633(20010504)2:5<365::AID-CBIC365>3.0.CO;2-M PubMedCrossRefGoogle Scholar
  8. 8.
    Greul, J.N., Kleban, M., Schneider, B., Picasso, S., Jager, V.: Amino-(hydroxymethyl)cyclopentanetriols, an emerging class of potent glycosidase inhibitors—Part II: synthesis, evaluation, and optimization of β-d-galactopyranoside analogues. ChemBioChem 2, 368–370 (2001). doi:10.1002/1439-7633(20010504)2:5<368::AID-CBIC368>3.0.CO;2-A PubMedCrossRefGoogle Scholar
  9. 9.
    Saotome, C., Wong, C.H., Kanie, O.: Combinatorial library of five-membered iminocyclitol and the inhibitory activities against glyco-enzymes. Chem. Biol. 8, 1061–1070 (2001). doi:10.1016/S1074-5521(01)00074-6 PubMedCrossRefGoogle Scholar
  10. 10.
    Lemaire, S.G., Popowycz, F., Garcia, E.R., Asenjo, A.T.C., Robina, I., Vogel, P.: An efficient combinatorial method for the discovery of glycosidase inhibitors. ChemBioChem 3, 466–470 (2002). doi:10.1002/1439-7633(20020503)3:5<466::AID-CBIC466>3.0.CO;2-D CrossRefGoogle Scholar
  11. 11.
    Wu, C.Y., Chang, C.F., Chen, J.S.Y., Wong, C.H., Lin, C.H.: Rapid diversity-oriented synthesis in microtiter plates for in situ screening: discovery of potent and selective α-fucosidase inhibitors. Angew. Chem. Int. Ed. 42, 4661–4664 (2003). doi:10.1002/anie.200351823 CrossRefGoogle Scholar
  12. 12.
    Liang, P.H., Cheng, W.C., Lee, Y.L., Yu, H.P., Wu, Y.T., Lin, Y.L., Wong, C.H.: Novel five-membered iminocyclitol derivatives as selective and potent glycosidase inhibitors: new structures for antivirals and osteoarthritis. ChemBioChem 7, 165–173 (2006). doi:10.1002/cbic.200500321 PubMedCrossRefGoogle Scholar
  13. 13.
    Bordier, A., Compain, P., Martin, O.R., Ikeda, K., Asano, N.: First stereocontrolled synthesis and biological evaluation of 1,6-dideoxy-L-nojirimycin. Tetrahedron 14, 47–51 (2003). doi:10.1016/S0957-4166(02)00752-8 CrossRefGoogle Scholar
  14. 14.
    Markad, S.D., Karanjule, N.S., Sharma, T., Sabharwal, S.G., Dhavale, D.D.: Synthesis and evaluation of glycosidase inhibitory activity of N-butyl 1-deoxy-d-gluco-homonojirimycin and N-butyl 1-deoxy-l-ido-homonojirimycin. Bioorg. Med. Chem. 14, 5535–5539 (2006). doi:10.1016/j.bmc.2006.04.027 PubMedCrossRefGoogle Scholar
  15. 15.
    Tatsuta, K.: Total synthesis and chemical design of useful glycosidase inhibitors. Pure Appl. Chem. 68, 1341–1346 (1984). doi:10.1351/pac199668061341 CrossRefGoogle Scholar
  16. 16.
    Maxwell, V.L., Evinson, E.L., Emmerson, D.P.G., Jenkins, P.R.: Synthesis, glycosidase activity and X-ray crystallography of 3-amino-sugars. Org. Biomol. Chem. 4, 2724–2732 (2006). doi:10.1039/b605916c PubMedCrossRefGoogle Scholar
  17. 17.
    Rossi, L.L., Basu, A.: Glycosidase inhibition by 1-glycosyl-4-phenyl triazoles. Bioorg. Med. Chem. Lett. 15, 3596–3599 (2005). doi:10.1016/j.bmcl.2005.05.081 PubMedCrossRefGoogle Scholar
  18. 18.
    Singhal, N.K., Ramanujam, B., Mariappandar, V., Rao, C.P.: Carbohydrate-based switch-on molecular sensor for Cu(II) in buffer: absorption and fluorescence study of the selective recognition of Cu(II) ions by galactosyl derivatives in HEPES buffer. Org. Lett. 8, 3525–3528 (2006). doi:10.1021/ol061274f PubMedCrossRefGoogle Scholar
  19. 19.
    Ahuja, R., Singhal, N.K., Ramanujam, B., Ravikumar, M., Rao, C.P.: Experimental and computational studies of the recognition of amino acids by galactosyl-imine and -amine derivatives: an attempt to understand the lectin–carbohydrate interactions. J. Org. Chem. 72, 3430–3442 (2007). doi:10.1021/jo0700979 PubMedCrossRefGoogle Scholar
  20. 20.
    Kumar, N.S., Rao, D.R.: The nature of lectins from Dolichos lablab. J. Biosci. 10, 95–109 (1986). doi:10.1007/BF02702844 CrossRefGoogle Scholar
  21. 21.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  22. 22.
    Papet, M.D., Delay, D., Monsigny, M., Delmotte, F.: Characterization of two galactosidases extracted from wheat germ with a hydroalcoholic solvent. Biochimie 74, 53–56 (1992). doi:10.1016/0300-9084(92)90183-F PubMedCrossRefGoogle Scholar
  23. 23.
    Snaith, S.M., Levvy, G.A.: Purification and properties of α-d-mannosidase from jack-bean meal. Biochem. J. 110, 663–670 (1968)PubMedGoogle Scholar
  24. 24.
    Bismuto, E., Nucci, R., Rossi, M., Irace, G.: Structural and dynamic aspects of β-glycosidase from mesophilic and thermophilic bacteria by multitryptophanyl emission decay studies. Proteins 35, 163–172 (1999). doi:10.1002/(SICI)1097-0134(19990501)35:2<163::AID-PROT3>3.0.CO;2-8 PubMedCrossRefGoogle Scholar
  25. 25.
    McAllister, K.A., Marrone, L., Clarke, A.J.: The role of tryptophan residues in substrate binding to catalytic domains A and B of xylanase C from Fibrobacter succinogenes S85. Biochim. Biophys. Acta. 1480, 342–352 (2000)PubMedGoogle Scholar
  26. 26.
    Golubev, A.M., Nagem, R.A.P., Neto, J.R.B., Neustroev, K.N., Eneyskaya, E.V., Kulminskaya, A.A., Shabalin, K.A., Savel’ev, A.N., Polikarpov, I.: Crystal structure of α-galactosidase from Trichoderma reesei and its complex with galactose: implications for catalytic mechanism. J. Mol. Biol. 339, 413–422 (2004). doi:10.1016/j.jmb.2004.03.062 PubMedCrossRefGoogle Scholar
  27. 27.
    Gupta, A., Gandhimathi, A., Sharma, P., Jayaram, B.: ParDOCK: an all atom energy based Monte Carlo docking protocol for protein–ligand complexes. Protein Pept. Lett. 14, 632–646 (2007). doi:10.2174/092986607781483831 PubMedCrossRefGoogle Scholar
  28. 28.
    Fujimoto, Z., Kaneko, S., Momma, M., Kobayashi, H., Mizuno, H.: Crystal structure of rice α-galactosidase complexed with D-galactose. J. Biol. Chem. 278, 20313–20318 (2003). doi:10.1074/jbc.M302292200 PubMedCrossRefGoogle Scholar
  29. 29.
    Vallee, F., Karaveg, K., Herscovics, A., Moremen, K.W., Howell, P.L.: Structural basis for catalysis and inhibition of N-glycan processing class I-α-1,2-mannosidases. J. Biol. Chem. 275, 41287–41298 (2000). doi:10.1074/jbc.M006927200 PubMedCrossRefGoogle Scholar
  30. 30.
    Wakarchuk, W.W., Campbell, R.L., Sung, W.L., Davoodi, J., Yaguchi, M.: Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci. 3, 467–475 (1994)PubMedCrossRefGoogle Scholar
  31. 31.
    Garman, S.C., Hannick, L., Zhu, A., Garboczi, D.N.: The 1.9 Å Structure of α-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. Structure 10, 425–434 (2002). doi:10.1016/S0969-2126(02)00726-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Czjzek, M., Cicek, M., Zamboni, V.R., Burmeister, W.P., Bevan, D.R., Henrissat, B., Esen, A.: Crystal structure of a monocotyledon (maize ZMGlu1) β-glucosidase and a model of its complex with p-nitrophenyl β-d-thioglucoside. Biochem. J. 354, 37–46 (2001). doi:10.1042/0264-6021:3540037 PubMedCrossRefGoogle Scholar
  33. 33.
    Czjzek, M., Alberto, F., Jordi, E., Bernard, H.: Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose. Biochem. J. 395, 457–462 (2006). doi:10.1042/BJ20051936 PubMedCrossRefGoogle Scholar
  34. 34.
    Wang, Y., Xiong, J.P., Xia, Z.X.: Crystal structure of trichosanthin–NADPH complex at 1.7 Å resolution reveals active-site architecture. Nat. Struct. Biol. 1, 695–700 (1994). doi:10.1038/nsb0394-145 PubMedCrossRefGoogle Scholar
  35. 35.
    Prive, G.G., Ahn, V.E., Faull, K.F., Whitelegge, J.P., Fluharty, A.L.: Crystal structure of saposin B reveals a dimeric shell for lipid binding. Proc. Natl. Acad. Sci. USA 100, 38–43 (2003). doi:10.1073/pnas.0136947100 PubMedCrossRefGoogle Scholar
  36. 36.
    Premkumar, L., Sawkar, A.R., Adamsky, S.B., Toker, L., Silman, I., Kelly, J.W., Futerman, A.H., Sussman, J.L.: X-ray structure of human acid-β-glucosidase covalently bound to conduritol-B-epoxide. J. Biol. Chem. 280, 23815–23819 (2005). doi:10.1074/jbc.M502799200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Amit Kumar
    • 1
  • Nitin K. Singhal
    • 1
  • Balaji Ramanujam
    • 1
  • Atanu Mitra
    • 1
  • Nagender R. Rameshwaram
    • 2
  • Siva K. Nadimpalli
    • 2
  • Chebrolu P. Rao
    • 1
  1. 1.Bioinorganic Laboratory, Department of ChemistryIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of Biochemistry, School of Life SciencesUniversity of HyderabadHyderabadIndia

Personalised recommendations