Glycoconjugate Journal

, Volume 26, Issue 3, pp 231–245 | Cite as

Multiple changes in sialic acid biology during human evolution

  • Ajit VarkiEmail author


Humans are genetically very similar to “great apes”, (chimpanzees, bonobos, gorillas and orangutans), our closest evolutionary relatives. We have discovered multiple genetic and biochemical differences between humans and these other hominids, in relation to sialic acids and in Siglecs (Sia-recognizing Ig superfamily lectins). An inactivating mutation in the CMAH gene eliminated human expression of N-glycolylneuraminic acid (Neu5Gc) a major sialic acid in “great apes”. Additional human-specific changes have been found, affecting at least 10 of the <60 genes known to be involved in the biology of sialic acids. There are potential implications for unique features of humans, as well as for human susceptibility or resistance to disease. Additionally, metabolic incorporation of Neu5Gc from animal-derived materials occurs into biotherapeutic molecules and cellular preparations - and into human tissues from dietary sources, particularly red meat and milk products. As humans also have varying and sometime high levels of circulating anti-Neu5Gc antibodies, there are implications for biotechnology products, and for some human diseases associated with chronic inflammation.


Sialic acids Human evolution Primates Inflammation N-glycolylneuraminic acid Siglecs 



I thank all involved members of my lab past and present, as well as several collaborators, whose contributions have made possible much of the work described in this review. Ongoing support from the NIH and the Mathers Foundation has also been vital to this effort.


  1. 1.
    Bishop, J.R., Gagneux, P.: Evolution of carbohydrate antigens—microbial forces shaping host glycomes? Glycobiology 17, 23R–34R (2007). doi: 10.1093/glycob/cwm005 PubMedCrossRefGoogle Scholar
  2. 2.
    Ohtsubo, K., Marth, J.D.: Glycosylation in cellular mechanisms of health and disease. Cell 126, 855–867 (2006). doi: 10.1016/j.cell.2006.08.019 PubMedCrossRefGoogle Scholar
  3. 3.
    Varki, A.: Nothing in glycobiology makes sense, except in the light of evolution. Cell 126, 841–845 (2006). doi: 10.1016/j.cell.2006.08.022 PubMedCrossRefGoogle Scholar
  4. 4.
    Haltiwanger, R.S., Lowe, J.B.: Role of glycosylation in development. Annu. Rev. Biochem. 73, 491–537 (2004). doi: 10.1146/annurev.biochem.73.011303.074043 PubMedCrossRefGoogle Scholar
  5. 5.
    Freeze, H.H.: Genetic defects in the human glycome. Nat. Rev. Genet. 7, 537–551 (2006). doi: 10.1038/nrg1894 PubMedCrossRefGoogle Scholar
  6. 6.
    Angata, T., Varki, A.: Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–469 (2002). doi: 10.1021/cr000407m PubMedCrossRefGoogle Scholar
  7. 7.
    Schauer, R.: Sialic acids: Fascinating sugars in higher animals and man. Zoology 107, 49–64 (2004). doi: 10.1016/j.zool.2003.10.002 PubMedCrossRefGoogle Scholar
  8. 8.
    Vimr, E.R., Kalivoda, K.A., Deszo, E.L., Steenbergen, S.M.: Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. Rev. 68, 132–153 (2004). doi: 10.1128/MMBR.68.1.132-153.2004 PubMedCrossRefGoogle Scholar
  9. 9.
    Lehmann, F., Tiralongo, E., Tiralongo, J.: Sialic acid-specific lectins: occurrence, specificity and function. Cell. Mol. Life Sci. 63, 1331–1354 (2006). doi: 10.1007/s00018-005-5589-y PubMedCrossRefGoogle Scholar
  10. 10.
    Varki, A.: Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature 446, 1023–1029 (2007). doi: 10.1038/nature05816 PubMedCrossRefGoogle Scholar
  11. 11.
    Altheide, T.K., Hayakawa, T., Mikkelsen, T.S., Diaz, S., Varki, N., Varki, A.: System-wide genomic and biochemical comparisons of sialic acid biology among primates and rodents: Evidence for two modes of rapid evolution. J. Biol. Chem. 281, 25689–25702 (2006). doi: 10.1074/jbc.M604221200 PubMedCrossRefGoogle Scholar
  12. 12.
    Blix, G., Gottschalk, A., Klenk, E.: Proposed nomenclature in the field of sialic acids. Nature 179, 1088 (1957). doi: 10.1038/1791088b0 PubMedCrossRefGoogle Scholar
  13. 13.
    Jourdian, G.W., Roseman, S.: Intermediary metabolism of sialic acids. Ann. N. Y. Acad. Sci. 106, 202–217 (1963)CrossRefGoogle Scholar
  14. 14.
    Varki, A.: Loss of N-Glycolylneuraminic acid in humans: mechanisms, consequences and implications for hominid evolution. Am. J. Phys. Anthropol. 44(Suppl 33), 54–69 (2001). doi: 10.1002/ajpa.10018 CrossRefGoogle Scholar
  15. 15.
    Schoop, H.J., Schauer, R., Faillard, H.: On the biosynthesis of N-glycolyneuraminic acid. Oxidative formation of N-glycolylneuraminic acid from N-acetylneuraminic acid. Hoppe Seylers Z. Physiol. Chem. 350, 155–162 (1969)PubMedGoogle Scholar
  16. 16.
    Schauer, R.: Biosynthesis of N-glycoloylneuraminic acid by an ascorbic acid- or NADP-dependent N-acetyl hydroxylating “N-acetylneuraminate: O2-oxidoreductase” in homogenates of porcine submaxillary gland. Hoppe Seylers Z. Physiol. Chem. 351, 783–791 (1970)PubMedGoogle Scholar
  17. 17.
    Kozutsumi, Y., Kawano, T., Kawasaki, H., Suzuki, K., Yamakawa, T., Suzuki, A.: Reconstitution of CMP-N-acetylneuraminic acid hydroxylation activity using a mouse liver cytosol fraction and soluble cytochrome b5 purified from horse erythrocytes. J. Biochem. 110, 429–435 (1991)PubMedGoogle Scholar
  18. 18.
    Shaw, L., Schauer, R.: The biosynthesis of N-glycoloylneuraminic acid occurs by hydroxylation of the CMP-glycoside of N-acetylneuraminic acid. Biol. Chem. Hoppe Seyler 369, 477–486 (1988)PubMedGoogle Scholar
  19. 19.
    Shaw, L., Schneckenburger, P., Carlsen, J., Christiansen, K., Schauer, R.: Mouse liver cytidine-5′-monophosphate-N-acetylneuraminic acid hydroxylase-Catalytic function and regulation. Eur. J. Biochem. 206, 269–277 (1992). doi: 10.1111/j.1432-1033.1992.tb16925.x PubMedCrossRefGoogle Scholar
  20. 20.
    Shaw, L., Schneckenburger, P., Schlenzka, W., Carlsen, J., Christiansen, K., Jürgensen, D., et al.: CMP-N-acetylneuraminic acid hydroxylase from mouse liver and pig submandibular glands—Interaction with membrane-bound and soluble cytochrome b5-dependent electron transport chains. Eur. J. Biochem. 219, 1001–1011 (1994). doi: 10.1111/j.1432-1033.1994.tb18583.x PubMedCrossRefGoogle Scholar
  21. 21.
    Takematsu, H., Kawano, T., Koyama, S., Kozutsumi, Y., Suzuki, A., Kawasaki, T.: Reaction mechanism underlying CMP-N-acetylneuraminic acid hydroxylation in mouse liver: Formation of a ternary complex of cytochrome b5, CMP-N-acetylneuraminic acid, and a hydroxylation enzyme. J. Biochem. 115, 381–386 (1994)PubMedGoogle Scholar
  22. 22.
    Kawano, T., Koyama, S., Takematsu, H., Kozutsumi, Y., Kawasaki, H., Kawashima, S., et al.: Molecular cloning of cytidine monophospho-N-acetylneuraminic acid hydroxylase. Regulation of species- and tissue-specific expression of N-glycolylneuraminic acid. J. Biol. Chem. 270, 16458–16463 (1995). doi: 10.1074/jbc.270.27.16458 PubMedCrossRefGoogle Scholar
  23. 23.
    Muchmore, E.A., Milewski, M., Varki, A., Diaz, S.: Biosynthesis of N-glycolyneuraminic acid. The primary site of hydroxylation of N-acetylneuraminic acid is the cytosolic sugar nucleotide pool. J. Biol. Chem. 264, 20216–20223 (1989)PubMedGoogle Scholar
  24. 24.
    Gottschalk, A.: The Chemistry and Biology of Sialic Acids and Related Substances. Cambridge University Press, Cambridge (1960)Google Scholar
  25. 25.
    Rosenberg, A., Schengrund, C.: Biological Roles of Sialic Acids. Plenum, New York and London (1976)Google Scholar
  26. 26.
    Hirabayashi, Y., Higashi, H., Kato, S., Taniguchi, M., Matsumoto, M.: Occurrence of tumor-associated ganglioside antigens with Hanganutziu-Deicher antigenic activity on human melanomas. Jpn. J. Cancer Res. 78, 614–620 (1987)PubMedGoogle Scholar
  27. 27.
    Higashi, H., Hirabayashi, Y., Fukui, Y., Naiki, M., Matsumoto, M., Ueda, S., et al.: Characterization of N-glycolylneuraminic acid-containing gangliosides as tumor-associated Hanganutziu-Deicher antigen in human colon cancer. Cancer Res. 45, 3796–3802 (1985)PubMedGoogle Scholar
  28. 28.
    Miyoshi, I., Higashi, H., Hirabayashi, Y., Kato, S., Naiki, M.: Detection of 4-O-acetyl-N-glycolylneuraminyl lactosylceramide as one of tumor-associated antigens in human colon cancer tissues by specific antibody. Mol. Immunol. 23, 631–638 (1986). doi: 10.1016/0161-5890(86)90100-8 PubMedCrossRefGoogle Scholar
  29. 29.
    Devine, P.L., Clark, B.A., Birrell, G.W., Layton, G.T., Ward, B.G., Alewood, P.F., et al.: The breast tumor-associated epitope defined by monoclonal antibody 3E1.2 is an O-linked mucin carbohydrate containing N-glycolylneuraminic acid. Cancer Res. 51, 5826–5836 (1991)PubMedGoogle Scholar
  30. 30.
    Kawachi, S., Saida, T., Uhara, H., Uemura, K., Taketomi, T., Kano, K.: Heterophile Hanganutziu-Deicher antigen in ganglioside fractions of human melanoma tissues. Int. Arch. Allergy Appl. Immunol. 85, 381–383 (1988)PubMedGoogle Scholar
  31. 31.
    Higashi, H., Naiki, M., Matuo, S., Okouchi, K.: Antigen of “serum sickness” type of heterophile antibodies in human sera: indentification as gangliosides with N-glycolylneuraminic acid. Biochem. Biophys. Res. Commun. 79, 388–395 (1977)PubMedCrossRefGoogle Scholar
  32. 32.
    Merrick, J.M., Zadarlik, K., Milgrom, F.: Characterization of the Hanganutziu-Deicher (serum-sickness) antigen as gangliosides containing N-glycolylneuraminic acid. Int. Arch. Allergy Appl. Immunol. 57, 477–480 (1978)PubMedGoogle Scholar
  33. 33.
    Malykh, Y.N., Schauer, R., Shaw, L.: N-glycolylneuraminic acid in human tumours. Biochimie 83, 623–634 (2001). doi: 10.1016/S0300-9084(01)01303-7 PubMedCrossRefGoogle Scholar
  34. 34.
    Irie, A., Koyama, S., Kozutsumi, Y., Kawasaki, T., Suzuki, A.: The molecular basis for the absence of N-glycolylneuraminic acid in humans. J. Biol. Chem. 273, 15866–15871 (1998). doi: 10.1074/jbc.273.25.15866 PubMedCrossRefGoogle Scholar
  35. 35.
    Chou, H.H., Takematsu, H., Diaz, S., Iber, J., Nickerson, E., Wright, K.L., et al.: A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc. Natl. Acad. Sci. U. S. A. 95, 11751–11756 (1998). doi: 10.1073/pnas.95.20.11751 PubMedCrossRefGoogle Scholar
  36. 36.
    Muchmore, E.A., Diaz, S., Varki, A.: A structural difference between the cell surfaces of humans and the great apes. Am. J. Phys. Anthropol. 107, 187–198 (1998). doi: 10.1002/(SICI)1096-8644(199810)107:2<187::AID-AJPA5>3.0.CO;2-S PubMedCrossRefGoogle Scholar
  37. 37.
    Hayakawa, T., Satta, Y., Gagneux, P., Varki, A., Takahata, N.: Alu-mediated inactivation of the human CMP-N-acetylneuraminic acid hydroxylase gene. Proc. Natl. Acad. Sci. U. S. A. 98, 11399–11404 (2001). doi: 10.1073/pnas.191268198 PubMedCrossRefGoogle Scholar
  38. 38.
    Chou, H.H., Hayakawa, T., Diaz, S., Krings, M., Indriati, E., Leakey, M., et al.: Inactivation of CMP-N-acetylneuraminic acid hydroxylase occurred prior to brain expansion during human evolution. Proc. Natl. Acad. Sci. U. S. A. 99, 11736–11741 (2002). doi: 10.1073/pnas.182257399 PubMedCrossRefGoogle Scholar
  39. 39.
    Hayakawa, T., Aki, I., Varki, A., Satta, Y., Takahata, N.: Fixation of the human-specific CMP-N-acetylneuraminic acid hydroxylase pseudogene and implications of haplotype diversity for human evolution. Genetics 172, 1139–1146 (2006). doi: 10.1534/genetics.105.046995 PubMedCrossRefGoogle Scholar
  40. 40.
    Gagneux, P., Varki, A.: Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999). doi: 10.1093/glycob/9.8.747 PubMedCrossRefGoogle Scholar
  41. 41.
    Lieberman, B.: Human evolution: details of being human. Nature 454, 21–23 (2008). doi: 10.1038/454021a PubMedCrossRefGoogle Scholar
  42. 42.
    Varki, A., Angata, T.: Siglecs—The major subfamily of I-type lectins. Glycobiology 16, 1R–27R (2006). doi: 10.1093/glycob/cwj008 PubMedCrossRefGoogle Scholar
  43. 43.
    Crocker, P.R., Paulson, J.C., Varki, A.: Siglecs and their roles in the immune system. Nat. Rev. Immunol. 7, 255–266 (2007). doi: 10.1038/nri2056 PubMedCrossRefGoogle Scholar
  44. 44.
    Sonnenburg, J.L., Altheide, T.K., Varki, A.: A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor. Glycobiology 14, 339–346 (2004). doi: 10.1093/glycob/cwh039 PubMedCrossRefGoogle Scholar
  45. 45.
    Hayakawa, T., Angata, T., Lewis, A.L., Mikkelsen, T.S., Varki, N.M., Varki, A.: A human-specific gene in microglia. Science 309, 1693 (2005)PubMedGoogle Scholar
  46. 46.
    Kyogashima, M., Ginsburg, V., Krivan, H.C.: Escherichia coli K99 binds to N-glycolylsialoparagloboside and N-glycolyl-GM3 found in piglet small intestine. Arch. Biochem. Biophys. 270, 391–397 (1989). doi: 10.1016/0003-9861(89)90042-8 PubMedCrossRefGoogle Scholar
  47. 47.
    Schwegmann-Wessels, C., Herrler, G.: Sialic acids as receptor determinants for coronaviruses. Glycoconj. J. 23, 51–58 (2006). doi: 10.1007/s10719-006-5437-9 PubMedCrossRefGoogle Scholar
  48. 48.
    Campanero-Rhodes, M.A., Smith, A., Chai, W., Sonnino, S., Mauri, L., Childs, R.A., et al.: N-glycolyl GM1 ganglioside as a receptor for simian virus 40. J. Virol. 81, 12846–12858 (2007). doi: 10.1128/JVI.01311-07 PubMedCrossRefGoogle Scholar
  49. 49.
    Poulin, D.L., DeCaprio, J.A.: Is there a role for SV40 in human cancer? J. Clin. Oncol. 24, 4356–4365 (2006). doi: 10.1200/JCO.2005.03.7101 PubMedCrossRefGoogle Scholar
  50. 50.
    Martin, M.J., Rayner, J.C., Gagneux, P., Barnwell, J.W., Varki, A.: Evolution of human-chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. Proc. Natl. Acad. Sci. U. S. A. 102, 12819–12824 (2005). doi: 10.1073/pnas.0503819102 PubMedCrossRefGoogle Scholar
  51. 51.
    Blacklock, B., Adler, S.: A parasite resembling Plasmodium falciparum in a Chimpanzee. Ann. Trop. Med. Parasitol. 160, 99–106 (1922)Google Scholar
  52. 52.
    Rodhain, J.: Les plasmodiums des anthropoides de I’Afrique centrale et leurs relations avec les plasmodiums humains. Ann. Soc. Belg. Med. Trop. 19, 563–572 (1939)Google Scholar
  53. 53.
    Rich, S.M., Ayala, F.J.: Progress in malaria research: the case for phylogenetics. Adv. Parasitol. 54, 255–280 (2003). doi: 10.1016/S0065-308X(03)54005-2 PubMedCrossRefGoogle Scholar
  54. 54.
    Volkman, S.K., Barry, A.E., Lyons, E.J., Nielsen, K.M., Thomas, S.M., Choi, M., et al.: Recent origin of Plasmodium falciparum from a single progenitor. Science 293, 482–484 (2001). doi: 10.1126/science.1059878 PubMedCrossRefGoogle Scholar
  55. 55.
    Conway, D.J.: Tracing the dawn of Plasmodium falciparum with mitochondrial genome sequences. Trends Genet. 19, 671–674 (2003). doi: 10.1016/j.tig.2003.10.007 PubMedCrossRefGoogle Scholar
  56. 56.
    Hartl, D.L.: The origin of malaria: mixed messages from genetic diversity. Nat. Rev. Microbiol. 2, 15–22 (2004). doi: 10.1038/nrmicro795 PubMedCrossRefGoogle Scholar
  57. 57.
    Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A., et al.: Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. U. S. A. 100, 12045–12050 (2003). doi: 10.1073/pnas.2131556100 PubMedCrossRefGoogle Scholar
  58. 58.
    Bardor, M., Nguyen, D.H., Diaz, S., Varki, A.: Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J. Biol. Chem. 280, 4228–4237 (2005). doi: 10.1074/jbc.M412040200 PubMedCrossRefGoogle Scholar
  59. 59.
    Nguyen, D.H., Tangvoranuntakul, P., Varki, A.: Effects of natural human antibodies against a nonhuman sialic acid that metabolically incorporates into activated and malignant immune cells. J. Immunol. 175, 228–236 (2005)PubMedGoogle Scholar
  60. 60.
    Padler-Karavani, V., Yu, H., Cao, H., Chokhawala, H., Karp, F., Varki, N., et al.: Diversity in specificity, abundance and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology (2008), in pressGoogle Scholar
  61. 61.
    Paulson, J.C., Colley, K.J.: Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 264, 17615–17618 (1989)PubMedGoogle Scholar
  62. 62.
    Paulson, J.C., Weinstein, J., Schauer, A.: Tissue-specific expression of sialyltransferases. J. Biol. Chem. 264, 10931–10934 (1989)PubMedGoogle Scholar
  63. 63.
    Martin, L.T., Marth, J.D., Varki, A., Varki, N.M.: Genetically altered mice with different sialyltransferase deficiencies show tissue-specific alterations in sialylation and sialic acid 9-O-acetylation. J. Biol. Chem. 277, 32930–32938 (2002). doi: 10.1074/jbc.M203362200 PubMedCrossRefGoogle Scholar
  64. 64.
    Gagneux, P., Cheriyan, M., Hurtado-Ziola, N., Brinkman Van Der Linden, E.C., Anderson, D., McClure, H., et al.: Human-specific regulation of Alpha2–6 linked sialic acids. J. Biol. Chem. 278, 48245–48250 (2003). doi: 10.1074/jbc.M309813200 PubMedCrossRefGoogle Scholar
  65. 65.
    Stevens, J., Blixt, O., Tumpey, T.M., Taubenberger, J.K., Paulson, J.C., Wilson, I.A.: Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science 312, 404–410 (2006). doi: 10.1126/science.1124513 PubMedCrossRefGoogle Scholar
  66. 66.
    Rogers, G.N., Paulson, J.C.: Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127, 361–373 (1983). doi: 10.1016/0042-6822(83)90150-2 PubMedCrossRefGoogle Scholar
  67. 67.
    Carroll, S.M., Higa, H.H., Paulson, J.C.: Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins. J. Biol. Chem. 256, 8357–8363 (1981)PubMedGoogle Scholar
  68. 68.
    Baum, L.G., Paulson, J.C.: Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem 89(Suppl. 40), 35–38 (1990)Google Scholar
  69. 69.
    Krzewinski-Recchi, M.A., Julien, S., Juliant, S., Teintenier-Lelievre, M., Samyn-Petit, B., Montiel, M.D., et al.: Identification and functional expression of a second human beta-galactoside alpha2,6-sialyltransferase, ST6Gal II. Eur. J. Biochem. 270, 950–961 (2003). doi: 10.1046/j.1432-1033.2003.03458.x PubMedCrossRefGoogle Scholar
  70. 70.
    Takashima, S., Tsuji, S., Tsujimoto, M.: Characterization of the second type of human beta-galactoside alpha2,6-sialyltransferase (ST6Gal II), which sialylates Galbeta1,4GlcNAc structures on oligosaccharides preferentially. J. Biol. Chem. 277, 45719–45728 (2002). doi: 10.1074/jbc.M206808200 PubMedCrossRefGoogle Scholar
  71. 71.
    Crocker, P.R., Mucklow, S., Bouckson, V., McWilliam, A., Willis, A.C., Gordon, S., et al.: Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J. 13, 4490–4503 (1994)PubMedGoogle Scholar
  72. 72.
    Powell, L.D., Sgroi, D., Sjoberg, E.R., Stamenkovic, I., Varki, A.: Natural ligands of the B cell adhesion molecule CD22beta carry N-linked oligosaccharides with alpha-2,6-linked sialic acids that are required for recognition. J. Biol. Chem. 268, 7019–7027 (1993)PubMedGoogle Scholar
  73. 73.
    Schnaar, R.L.: Glycolipid-mediated cell–cell recognition in inflammation and nerve regeneration. Arch. Biochem. Biophys. 426, 163–172 (2004). doi: 10.1016/ PubMedCrossRefGoogle Scholar
  74. 74.
    Angata, T., Tabuchi, Y., Nakamura, K., Nakamura, M.: Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology 17, 838–846 (2007). doi: 10.1093/glycob/cwm049 PubMedCrossRefGoogle Scholar
  75. 75.
    Crocker, P.R., Kelm, S., Dubois, C., Martin, B., McWilliam, A.S., Shotton, D.M., et al.: Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J. 10, 1661–1669 (1991)PubMedGoogle Scholar
  76. 76.
    Brinkman-Van der Linden, E.C.M., Sjoberg, E.R., Juneja, L.R., Crocker, P.R., Varki, N., Varki, A.: Loss of N-glycolylneuraminic acid in human evolution—Implications for sialic acid recognition by siglecs. J. Biol. Chem. 275, 8633–8640 (2000). doi: 10.1074/jbc.275.12.8633 PubMedCrossRefGoogle Scholar
  77. 77.
    van der Kuyl, A.C., van den Burg, R., Zorgdrager, F., Groot, F., Berkhout, B., Cornelissen, M.: Sialoadhesin (CD169) expression in CD14+ cells is upregulated early after HIV-1 infection and increases during disease progression. PLoS One 2, e257 (2007). doi: 10.1371/journal.pone.0000257 PubMedCrossRefGoogle Scholar
  78. 78.
    Rempel, H., Calosing, C., Sun, B., Pulliam, L.: Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity. PLoS One 3, 1967 (2008)CrossRefGoogle Scholar
  79. 79.
    Hartnell, A., Steel, J., Turley, H., Jones, M., Jackson, D.G., Crocker, P.R.: Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 97, 288–296 (2001). doi: 10.1182/blood.V97.1.288 PubMedCrossRefGoogle Scholar
  80. 80.
    Nath, D., Hartnell, A., Happerfield, L., Miles, D.W., Burchell, J., Taylor-Papadimitriou, J., et al.: Macrophage-tumour cell interactions: Identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 98, 213–219 (1999). doi: 10.1046/j.1365-2567.1999.00827.x PubMedCrossRefGoogle Scholar
  81. 81.
    Kelm, S., Schauer, R., Manuguerra, J.-C., Gross, H.-J., Crocker, P.R.: Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconj. J. 11, 576–585 (1994). doi: 10.1007/BF00731309 PubMedCrossRefGoogle Scholar
  82. 82.
    Jones, C., Virji, M., Crocker, P.R.: Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol. Microbiol. 49, 1213–1225 (2003). doi: 10.1046/j.1365-2958.2003.03634.x PubMedCrossRefGoogle Scholar
  83. 83.
    Lewis, A.L., Nizet, V., Varki, A.: Discovery and characterization of sialic acid O-acetylation in group B Streptococcus. Proc. Natl. Acad. Sci. U. S. A. 101, 11123–11128 (2004). doi: 10.1073/pnas.0403010101 PubMedCrossRefGoogle Scholar
  84. 84.
    Carlin, A.F., Lewis, A.L., Varki, A., Nizet, V., Group, B.: Streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes. J. Bacteriol. 89, 1231–1237 (2007)Google Scholar
  85. 85.
    Angata, T., Varki, N.M., Varki, A.: A second uniquely human mutation affecting sialic acid biology. J. Biol. Chem. 276, 40282–40287 (2001)PubMedGoogle Scholar
  86. 86.
    Angata, T., Margulies, E.H., Green, E.D., Varki, A.: Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc. Natl. Acad. Sci. U. S. A. 101, 13251–13256 (2004). doi: 10.1073/pnas.0404833101 PubMedCrossRefGoogle Scholar
  87. 87.
    Patel, N., Brinkman-Van der Linden, E.C.M., Altmann, S.W., Gish, K., Balasubramanian, S., Timans, J.C., Peterson, D., Bell, M.P., Bazan, J.F., Varki, A., Kastelein, R.A.: OB-BP1/Siglec-6—A leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J. Biol. Chem. 274, 22729–22738 (1999). doi: 10.1074/jbc.274.32.22729 PubMedCrossRefGoogle Scholar
  88. 88.
    Takei, Y., Sasaki, S., Fujiwara, T., Takahashi, E., Muto, T., Nakamura, Y.: Molecular cloning of a novel gene similar to myeloid antigen CD33 and its specific expression in placenta. Cytogenet. Cell Genet. 78, 295–300 (1997). doi: 10.1159/000134676 PubMedCrossRefGoogle Scholar
  89. 89.
    Brinkman-Van der Linden, E.C., Hurtado-Ziola, N., Hayakawa, T., Wiggleton, L., Benirschke, K., Varki, A., Varki, N.: Human-specific expression of Siglec-6 in the placenta. Glycobiology 17, 922–931 (2007). doi: 10.1093/glycob/cwm065 PubMedCrossRefGoogle Scholar
  90. 90.
    Keeling, M.R., Roberts, J.R.: The chimpanzee. In: Bourne, G.H. (ed.) Volume 5: Histology, Reproduction and Restraint, pp. 143–150. S. Karger, New York (1972)Google Scholar
  91. 91.
    Lefebvre, L., Carli, G.: Parturition in non-human primates: pain and auditory concealment. Pain 21, 315–327 (1985). doi: 10.1016/0304-3959(85)90161-7 PubMedCrossRefGoogle Scholar
  92. 92.
    Nguyen, D.H., Hurtado-Ziola, N., Gagneux, P., Varki, A.: Loss of Siglec expression on T lymphocytes during human evolution. Proc. Natl. Acad. Sci. U. S. A. 103, 7765–7770 (2006). doi: 10.1073/pnas.0510484103 PubMedCrossRefGoogle Scholar
  93. 93.
    Bibollet-Ruche, F., McKinney, B.A., Duverger, A., Wagner, F.H., Ansari, A.A., Kutsch, O.: The quality of chimpanzee T cell activation and SIV/HIV susceptibility achieved via antibody-mediated TCR/CD3 stimulation is a function of the anti-CD3 antibody isotype. J. Virol. (2008), in pressGoogle Scholar
  94. 94.
    Varki, A.: A chimpanzee genome project is a biomedical imperative. Genome Res. 10, 1065–1070 (2000). doi: 10.1101/gr.10.8.1065 PubMedCrossRefGoogle Scholar
  95. 95.
    Olson, M.V., Varki, A.: Sequencing the chimpanzee genome: Insights into human evolution and disease. Nat. Rev. Genet. 4, 20–28 (2003). doi: 10.1038/nrg981 PubMedCrossRefGoogle Scholar
  96. 96.
    Varki, A., Altheide, T.K.: Comparing the human and chimpanzee genomes: Searching for needles in a haystack. Genome Res. 15, 1746–1758 (2005). doi: 10.1101/gr.3737405 PubMedCrossRefGoogle Scholar
  97. 97.
    Gougeon, M.L., Lecoeur, H., Boudet, F., Ledru, E., Marzabal, S., Boullier, S., et al.: Lack of chronic immune activation in HIV-infected chimpanzees correlates with the resistance of T cells to Fas/Apo-1 (CD95)-induced apoptosis and preservation of a T helper 1 phenotype. J. Immunol. 158, 2964–2976 (1997)PubMedGoogle Scholar
  98. 98.
    Angata, T., Kerr, S.C., Greaves, D.R., Varki, N.M., Crocker, P.R., Varki, A.: Cloning and characterization of human Siglec-11. A recently evolved signaling molecule that can interact with SHP-1 and SHP-2 and is expressed by tissue macrophages, including brain microglia. J. Biol. Chem. 277, 24466–24474 (2002). doi: 10.1074/jbc.M202833200 PubMedCrossRefGoogle Scholar
  99. 99.
    Guillemin, G.J., Brew, B.J.: Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J. Leukoc. Biol. 75, 388–397 (2004). doi: 10.1189/jlb.0303114 PubMedCrossRefGoogle Scholar
  100. 100.
    Lu, Y.Z., Lin, C.H., Cheng, F.C., Hsueh, C.M.: Molecular mechanisms responsible for microglia-derived protection of Sprague–Dawley rat brain cells during in vitro ischemia. Neurosci. Lett. 373, 159–164 (2005). doi: 10.1016/j.neulet.2004.10.004 PubMedCrossRefGoogle Scholar
  101. 101.
    Minagar, A., Shapshak, P., Fujimura, R., Ownby, R., Heyes, M., Eisdorfer, C.: The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J. Neurol. Sci. 202, 13–23 (2002). doi: 10.1016/S0022-510X(02)00207-1 PubMedCrossRefGoogle Scholar
  102. 102.
    Cao, H., Lakner, U., de Bono, B., Traherne, J.A., Trowsdale, J., Barrow, A.D.: SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur. J. Immunol. 38, 2303–2315 (2008). doi: 10.1002/eji.200738078 PubMedCrossRefGoogle Scholar
  103. 103.
    Cornish, A.L., Freeman, S., Forbes, G., Ni, J., Zhang, M., Cepeda, M., et al.: Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood 92, 2123–2132 (1998)PubMedGoogle Scholar
  104. 104.
    Angata, T., Hayakawa, T., Yamanaka, M., Varki, A., Nakamura, M.: Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J. 20, 1964–1973 (2006). doi: 10.1096/fj.06-5800com PubMedCrossRefGoogle Scholar
  105. 105.
    Gagneux, P., Moore, J.J., Varki, A.: The ethics of research on great apes. Nature 437, 27–29 (2005). doi: 10.1038/437027a PubMedCrossRefGoogle Scholar
  106. 106.
    Cohen, J.: Biomedical research. The endangered lab chimp. Science 315, 450–452 (2007). doi: 10.1126/science.315.5811.450 PubMedCrossRefGoogle Scholar
  107. 107.
    Naito, Y., Takematsu, H., Koyama, S., Miyake, S., Yamamoto, H., Fujinawa, R., et al.: Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol. 27, 3008–3022 (2007). doi: 10.1128/MCB.02047-06 PubMedCrossRefGoogle Scholar
  108. 108.
    Hedlund, M., Tangvoranuntakul, P., Takematsu, H., Long, J.M., Housley, G.D., Kozutsumi, Y., et al.: N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution. Mol. Cell. Biol. 27, 4340–4346 (2007). doi: 10.1128/MCB.00379-07 PubMedCrossRefGoogle Scholar
  109. 109.
    Nishimaki, T., Kano, K., Milgrom, F.: Hanganutziu–Deicher antigen and antibody in pathologic sera and tissues. J. Immunol. 122, 2314–2318 (1979)PubMedGoogle Scholar
  110. 110.
    Takiguchi, M., Tamura, T., Goto, M., Kusakawa, S., Milgrom, F., Kano, K.: Immunological studies on Kawasaki disease. I. Appearance of Hanganutziu–Deicher antibodies. Clin. Exp. Immunol. 56, 345–352 (1984)PubMedGoogle Scholar
  111. 111.
    Morito, T., Kano, K., Milgrom, F.: Hanganutziu–Deicher antibodies in infectious mononucleosis and other diseases. J. Immunol. 129, 2524–2528 (1982)PubMedGoogle Scholar
  112. 112.
    Mukuria, C.J., Fujii, Y., Kato, S., Naiki, M.: Specificities of human heterophile Hanganutziu and Deicher (HD) antibodies to glycosphingolipids and a glycoprotein. J. Biochem. 100, 469–475 (1986)PubMedGoogle Scholar
  113. 113.
    Golaszewska, E., Kurowska, E., Duk, M., Koscielak, J.: Paul–Bunnell antigen and a possible mechanism of formation of heterophile antibodies in patients with infectious mononucleosis. Acta Biochim. Pol. 50, 1205–1211 (2003)PubMedGoogle Scholar
  114. 114.
    Beer, P.: The heterophile antibodies in infectious mononucloesis and after injection of serum. J. Clin. Invest. 15, 591–599 (1936). doi: 10.1172/JCI100811 PubMedCrossRefGoogle Scholar
  115. 115.
    Nakarai, H., Chandler, P.J., Kano, K., Morton, D.L., Irie, R.F.: Hanganutziu–Deicher antigen as a possible target for immunotherapy of melanoma. Int. Arch. Allergy Appl. Immunol. 91, 323–328 (1990)PubMedGoogle Scholar
  116. 116.
    Asaoka, H., Nishinaka, S., Wakamiya, N., Matsuda, H., Murata, M.: Two chicken monoclonal antibodies specific for heterophil Hanganutziu–Deicher antigens. Immunol. Lett. 32, 91–96 (1992). doi: 10.1016/0165-2478(92)90205-3 PubMedCrossRefGoogle Scholar
  117. 117.
    Morito, T., Nishimaki, T., Masaki, M., Yoshida, H., Kasukawa, R., Nakarai, H., et al.: Studies on Hanganutziu–Deicher antigens-antibodies. I Hanganutziu–Deicher antibodies of IgG class in liver diseases. Int. Arch. Allergy Appl. Immunol. 81, 204–208 (1986)PubMedGoogle Scholar
  118. 118.
    Higashihara, T., Takeshima, T., Anzai, M., Tomioka, M., Matsumoto, K., Nishida, K., et al.: Survey of Hanganutziu and Deicher antibodies in operated patients. Int. Arch. Allergy Appl. Immunol. 95, 231–235 (1991)PubMedGoogle Scholar
  119. 119.
    Iznaga, N., Carr, A., Fernández, L.E., Solozabal, J., Núñez, G., Perdomo, Y., et al.: Amplified ELISA to detect autoantibodies to N-glycolyl-GM3 ganglioside. J. Clin. Lab. Immunol. 48, 75–85 (1996)PubMedGoogle Scholar
  120. 120.
    Halbert, S.P., Anken, M., Henle, W., Golubjatnikov, R.: Detection of infectious mononucleosis heterophil antibody by a rapid, standardized enzyme-linked immunosorbent assay procedure. J. Clin. Microbiol. 15, 610–616 (1982)PubMedGoogle Scholar
  121. 121.
    Zhu, A., Hurst, R.: Anti-N-glycolylneuraminic acid antibodies identified in healthy human serum. Xenotransplantation 9, 376–381 (2002). doi: 10.1034/j.1399-3089.2002.02138.x PubMedCrossRefGoogle Scholar
  122. 122.
    Rose, D.P., Boyar, A.P., Wynder, E.L.: International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer 58, 2363–2371 (1986). doi: 10.1002/1097-0142(19861201)58:11<2363::AID-CNCR2820581102>3.0.CO;2-# PubMedCrossRefGoogle Scholar
  123. 123.
    Giovannucci, E., Rimm, E.B., Colditz, G.A., Stampfer, M.J., Ascherio, A., Chute, C.C., et al.: A prospective study of dietary fat and risk of prostate cancer. J. Natl. Cancer Inst. 85, 1571–1579 (1993). doi: 10.1093/jnci/85.19.1571 PubMedCrossRefGoogle Scholar
  124. 124.
    Fraser, G.E.: Associations between diet and cancer, ischemic heart disease, and all-cause mortality in non-Hispanic white California Seventh-day Adventists. Am. J. Clin. Nutr. 70, 532S–538S (1999)PubMedGoogle Scholar
  125. 125.
    Willett, W.C.: Diet and cancer. Oncologist 5, 393–404 (2000). doi: 10.1634/theoncologist.5-5-393 PubMedCrossRefGoogle Scholar
  126. 126.
    Tavani, A., La, V.C., Gallus, S., Lagiou, P., Trichopoulos, D., Levi, F., et al.: Red meat intake and cancer risk: A study in Italy. Int. J. Cancer 86, 425–428 (2000). doi: 10.1002/(SICI)1097-0215(20000501)86:3<425::AID-IJC19>3.0.CO;2-S PubMedCrossRefGoogle Scholar
  127. 127.
    Norat, T., Lukanova, A., Ferrari, P., Riboli, E.: Meat consumption and colorectal cancer risk: Dose-response meta-analysis of epidemiological studies. Int. J. Cancer 98, 241–256 (2002). doi: 10.1002/ijc.10126 PubMedCrossRefGoogle Scholar
  128. 128.
    Bosetti, C., Micelotta, S., Dal Maso, L., Talamini, R., Montella, M., Negri, E., et al.: Food groups and risk of prostate cancer in Italy. Int. J. Cancer 110, 424–428 (2004). doi: 10.1002/ijc.20142 PubMedCrossRefGoogle Scholar
  129. 129.
    Zhang, J., Kesteloot, H.: Milk consumption in relation to incidence of prostate, breast, colon, and rectal cancers: Is there an independent effect? Nutr. Cancer 53, 65–72 (2005). doi: 10.1207/s15327914nc5301_8 PubMedCrossRefGoogle Scholar
  130. 130.
    Tseng, M., Breslow, R.A., Graubard, B.I., Ziegler, R.G.: Dairy, calcium, and vitamin D intakes and prostate cancer risk in the National Health and Nutrition Examination Epidemiologic Follow-up Study cohort. Am. J. Clin. Nutr. 81, 1147–1154 (2005)PubMedGoogle Scholar
  131. 131.
    Coussens, L.M., Werb, Z.: Inflammation and cancer. Nature 420, 860–867 (2002). doi: 10.1038/nature01322 PubMedCrossRefGoogle Scholar
  132. 132.
    Mantovani, A.: Cancer: Inflammation by remote control. Nature 435, 752–753 (2005). doi: 10.1038/435752a PubMedCrossRefGoogle Scholar
  133. 133.
    Tan, T.T., Coussens, L.M.: Humoral immunity, inflammation and cancer. Curr. Opin. Immunol. 19, 209–216 (2007). doi: 10.1016/j.coi.2007.01.001 PubMedCrossRefGoogle Scholar
  134. 134.
    Mantovani, A., Allavena, P., Sica, A., Balkwill, F.: Cancer-related inflammation. Nature 454, 436–444 (2008). doi: 10.1038/nature07205 PubMedCrossRefGoogle Scholar
  135. 135.
    Jovinge, S., Ares, M.P., Kallin, B., Nilsson, J.: Human monocytes/macrophages release TNF-alpha in response to Ox-LDL. Arterioscler. Thromb. Vasc. Biol. 16, 1573–1579 (1996)PubMedGoogle Scholar
  136. 136.
    Lei, X., Buja, L.M.: Detection and localization of tumor necrosis factor-alpha in WHHL rabbit arteries. Atherosclerosis 125, 81–89 (1996). doi: 10.1016/0021-9150(96)05863-7 PubMedCrossRefGoogle Scholar
  137. 137.
    Zhang, L., Peppel, K., Sivashanmugam, P., Orman, E.S., Brian, L., Exum, S.T., et al.: Expression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 27, 1087–1094 (2007). doi: 10.1161/ATVBAHA.0000261548.49790.63 PubMedGoogle Scholar
  138. 138.
    Yin, J., Hashimoto, A., Izawa, M., Miyazaki, K., Chen, G.Y., Takematsu, H., et al.: Hypoxic culture induces expression of sialin, a sialic acid transporter, and cancer-associated gangliosides containing non-human sialic acid on human cancer cells. Cancer Res. 66, 2937–2945 (2006). doi: 10.1158/0008-5472.CAN-05-2615 PubMedCrossRefGoogle Scholar
  139. 139.
    Hokke, C.H., Bergwerff, A.A., van Dedem, G.W., van Oostrum, J., Kamerling, J.P., Vliegenthart, J.F.: Sialylated carbohydrate chains of recombinant human glycoproteins expressed in Chinese hamster ovary cells contain traces of N-glycolylneuraminic acid. FEBS Lett. 275, 9–14 (1990). doi: 10.1016/0014-5793(90)81427-P PubMedCrossRefGoogle Scholar
  140. 140.
    Raju, T.S., Briggs, J.B., Borge, S.M., Jones, A.J.S.: Species-specific variation in glycosylation of IgG: evidence for the species-specific sialylation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10, 477–486 (2000). doi: 10.1093/glycob/10.5.477 PubMedCrossRefGoogle Scholar
  141. 141.
    Zhou, Q., Kyazike, J., Echelard, Y., Meade, H.M., Higgins, E., Cole, E.S., et al.: Effect of genetic background on glycosylation heterogeneity in human antithrombin produced in the mammary gland of transgenic goats. J. Biotechnol. 117, 57–72 (2005). doi: 10.1016/j.jbiotec.2005.01.001 PubMedCrossRefGoogle Scholar
  142. 142.
    Huang, L., Biolsi, S., Bales, K.R., Kuchibhotla, U.: Impact of variable domain glycosylation on antibody clearance: An LC/MS characterization. Anal. Biochem. 349, 197–207 (2006). doi: 10.1016/j.ab.2005.11.012 PubMedCrossRefGoogle Scholar
  143. 143.
    Hashii, N., Kawasaki, N., Nakajima, Y., Toyoda, M., Katagiri, Y., Itoh, S., et al.: Study on the quality control of cell therapy products. Determination of N-glycolylneuraminic acid incorporated into human cells by nano-flow liquid chromatography/Fourier transformation ion cyclotron mass spectrometry. J. Chromatogr. A 1160, 263–269 (2007). doi: 10.1016/j.chroma.2007.05.062 PubMedCrossRefGoogle Scholar
  144. 144.
    Qian, J., Liu, T., Yang, L., Daus, A., Crowley, R., Zhou, Q.: Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal. Biochem. 364, 8–18 (2007). doi: 10.1016/j.ab.2007.01.023 PubMedCrossRefGoogle Scholar
  145. 145.
    Martin, M.J., Muotri, A., Gage, F., Varki, A.: Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat. Med. 11, 228–232 (2005). doi: 10.1038/nm1181 PubMedCrossRefGoogle Scholar
  146. 146.
    Lanctot, P.M., Gage, F.H., Varki, A.P.: The glycans of stem cells. Curr. Opin. Chem. Biol. 11, 373–380 (2007). doi: 10.1016/j.cbpa.2007.05.032 PubMedCrossRefGoogle Scholar
  147. 147.
    Heiskanen, A., Satomaa, T., Tiitinen, S., Laitinen, A., Mannelin, S., Impola, U., et al.: N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25, 197–202 (2007). doi: 10.1634/stemcells.2006-0444 PubMedCrossRefGoogle Scholar
  148. 148.
    Noguchi, A., Mukuria, C.J., Suzuki, E., Naiki, M.: Failure of human immunoresponse to N-glycolylneuraminic acid epitope contained in recombinant human erythropoietin. Nephron 72, 599–603 (1996)PubMedCrossRefGoogle Scholar
  149. 149.
    Sullivan, T.P., Eaglstein, W.H., Davis, S.C., Mertz, P.: The pig as a model for human wound healing. Wound Repair Regen. 9, 66–76 (2001). doi: 10.1046/j.1524-475x.2001.00066.x PubMedCrossRefGoogle Scholar
  150. 150.
    Gurtner, G.C., Werner, S., Barrandon, Y., Longaker, M.T.: Wound repair and regeneration. Nature 453, 314–321 (2008). doi: 10.1038/nature07039 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Center for Academic Research and Training in Anthropogeny, Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaUSA

Personalised recommendations