Glycoconjugate Journal

, Volume 26, Issue 2, pp 211–218 | Cite as

Structural characterization of glycosaminoglycans from zebrafish in different ages

  • Fuming Zhang
  • Zhenqing Zhang
  • Robert Thistle
  • Lindsey McKeen
  • Saori Hosoyama
  • Toshihiko Toida
  • Robert J. LinhardtEmail author
  • Patrick Page-McCawEmail author


The zebrafish (Danio rerio) is a popular model organism for the study of developmental biology, disease mechanisms, and drug discovery. Glycosaminoglycans (GAGs), located on animal cell membranes and in the extracellular matrix, are important molecules in cellular communication during development, in normal physiology and pathophysiology. Vertebrates commonly contain a variety of GAGs including chondroitin/dermatan sulfates, heparin/heparan sulfate, hyaluronan and keratan sulfate. Zebrafish might represent an excellent experimental organism to study the biological roles of GAGs. A recent study showing the absence of heparan sulfate in adult zebrafish, suggested a more detailed evaluation of the GAGs present in this important model organism needed to be undertaken. This report aimed at examining the structural alterations of different GAGs at the molecular level at different developmental stages. GAGs were isolated and purified from zebrafish in different stages in development ranging from 0.5 days to adult. The content and disaccharide composition of chondroitin sulfate and heparan sulfate were determined using chemical assays, liquid chromotography and mass spectrometry. The presence of HS in adult fish was also confirmed using 1H-NMR.


Zebrafish Glycosaminoglycans LC-MS NMR 



This work was supported by the National Institute of Health (Grants HL62244 and GH38060 to RL).


  1. 1.
    Rohde, L.A., Heisenberg, C.P.: Zebrafish gastrulation: cell movements, signals, and mechanisms. Int. Rev. Cytol. 261, 159–192 (2007). doi: 10.1016/S0074-7696(07)61004-3 PubMedCrossRefGoogle Scholar
  2. 2.
    Itoh, N.: The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol. Pharm. Bull. 30, 1819–1825 (2007). doi: 10.1248/bpb.30.1819 PubMedCrossRefGoogle Scholar
  3. 3.
    Goessling, W., North, T.E., Zon, L.: New waves of discovery: modeling cancer in zebrafish. J. Clin. Oncol. 25, 2473–2479 (2007). doi: 10.1200/JCO.2006.08.9821 PubMedCrossRefGoogle Scholar
  4. 4.
    Renshaw, S.A., Loynes, C.A., Elworthy, S., Ingham, P.W., Whyte, M.K.: Modeling inflammation in the zebrafish: how a fish can help us understand lung disease. Exp. Lung Res. 33, 549–554 (2007). doi: 10.1080/01902140701756778 PubMedCrossRefGoogle Scholar
  5. 5.
    Dooley, K., Zon, L.: Zebrafish: a model system for the study of human disease. Curr. Opin. Genet. Dev. 10, 252–256 (2000). doi: 10.1016/S0959-437X(00)00074-5 PubMedCrossRefGoogle Scholar
  6. 6.
    Postlethwait, J.H., Yan, Y.L., Gates, M.A., Horne, S., Amores, A., Brownlie, A., et al.: Vertebrate genome evolution and the zebrafish gene map. Nat. Genet. 18, 345–349 (1998). doi: 10.1038/ng0498-345 PubMedCrossRefGoogle Scholar
  7. 7.
    Zon, L., Peterson, R.T.: In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005). doi: 10.1038/nrd1606 PubMedCrossRefGoogle Scholar
  8. 8.
    Rubinstein, A.L.: Zebrafish: from disease modeling to drug discovery. Curr. Opin. Drug Discov. Dev. 6, 218–223 (2003)Google Scholar
  9. 9.
    Handel, T.M., Johnson, Z., Crown, S.E., Lau, E.K., Sweeney, M., Proudfoot, A.E.: Regulation of protein function by glycosaminoglyacans—as exemplified by chemokines. Annu. Rev. Biochem. 74, 385–410 (2005)PubMedCrossRefGoogle Scholar
  10. 10.
    De Cat, B., Muyldermans, S.Y., Coomans, C., Degeest, G., Vanderschueren, B., Creemers, J., et al.: Processing by proprotein convertases is required for glypican-3 modulation of cell survival, Wnt signaling, and gastrulation movements. J. Cell Biol. 163, 625–635 (2003). doi: 10.1083/jcb.200302152 PubMedCrossRefGoogle Scholar
  11. 11.
    Topczewski, J., Sepich, D.S., Myers, D.C., Walker, C., Amores, A., Lele, Z., Solnica-Krezel, L., et al.: The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 1, 251–264 (2001). doi: 10.1016/S1534-5807(01)00005-3 PubMedCrossRefGoogle Scholar
  12. 12.
    Bernhardt, R.R., Goerlinger, S., Roos, M., Schachner, M.: Anterior–posterior subdivision of the somite in embryonic zebrafish: implications for motor axon guidance. Dev. Dyn. 213, 334–347 (1998). doi: 10.1002/(SICI)1097-0177(199811)213:3<334::AID-AJA9>3.0.CO;2-4 PubMedCrossRefGoogle Scholar
  13. 13.
    Walsh, E.C., Stainier, D.Y.: UDP-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science 293, 1670–1673 (2001). doi: 10.1126/science.293.5535.1670 PubMedCrossRefGoogle Scholar
  14. 14.
    Bernhardt, R.R., Schachner, M.: Chondroitin sulfates affect the formation of the segmental motor nerves in zebrafish embryos. Dev. Biol. 221, 206–219 (2000). doi: 10.1006/dbio.2000.9673 PubMedCrossRefGoogle Scholar
  15. 15.
    Becker, C.G., Becker, T.: Repellent guidance of regenerating optic axons by chondroitin sulfate glycosaminoglycans in zebrafish. J. Neurosci. 22, 842–853 (2002)PubMedGoogle Scholar
  16. 16.
    Bink, R.J., Habuchi, H., Lele, Z., Dolk, E., Joore, J., Rauch, G.J., Geisler, R., Wilson, S.W., den Hertog, J., Kimata, K., Zivkovic, D.: Heparan sulfate 6-O-sulfotransferase is essential for muscle development in zebrafish. J. Biol. Chem. 278, 31118–31127 (2003). doi: 10.1074/jbc.M213124200 PubMedCrossRefGoogle Scholar
  17. 17.
    Norton, W.H., Ledin, J., Grandel, H., Neumann, C.J.: HSPG synthesis by zebrafish Ext2 and Extl3 is required for Fgf10 signalling during limb development. Development 132, 4963–4973 (2005). doi: 10.1242/dev.02084 PubMedCrossRefGoogle Scholar
  18. 18.
    Souza, A.R., Kozlowski, E.O., Cerqueira, V.R., Castelo-Branco, M.T., Costa, M.L., Pavão, M.S.: Chondroitin sulfate and keratan sulfate are the major glycosaminoglycans present in the adult zebrafish Danio rerio (Chordata–Cyprinidae). Glycoconj. J. 24, 521–530 (2007). doi: 10.1007/s10719-007-9046-z PubMedCrossRefGoogle Scholar
  19. 19.
    Chen, E., Hermanson, S., Ekker, S.C.: Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103, 1710–1719 (2004). doi: 10.1182/blood-2003-06-1783 PubMedCrossRefGoogle Scholar
  20. 20.
    Westerfield, M.: The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 4th edn. University of Oregon Press, Eugene, OR (2000)Google Scholar
  21. 21.
    Zhang, F., Sun, P., Munoz, E., Chi, L., Sakai, S., Toida, T., et al.: Microscale isolation and analysis of heparin from plasma using an anion exchange spin column. Anal. Biochem. 353, 284–286 (2006). doi: 10.1016/j.ab.2006.01.040 PubMedCrossRefGoogle Scholar
  22. 22.
    Bitter, T., Muir, H.M.: A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330–334 (1962). doi: 10.1016/0003-2697(62)90095-7 PubMedCrossRefGoogle Scholar
  23. 23.
    Edens, R.E., Al-Hakim, A., Weiler, J.M., Rethwisch, D.G., Fareed, J., Linhardt, R.J.: Gradient polyacrylamide gel electrophoresis for determination of the molecular weights of heparin preparations and low-molecular-weight heparin derivatives. J. Pharm. Sci. 81, 823–827 (1992). doi: 10.1002/jps.2600810821 PubMedCrossRefGoogle Scholar
  24. 24.
    Thanawiroon, C., Rice, K.G., Toida, T., Linhardt, R.J.: LC/MS sequencing of highly sulfated heparin-derived oligosaccharides. J. Biol. Chem. 279, 2608–2615 (2004). doi: 10.1074/jbc.M304772200 PubMedCrossRefGoogle Scholar
  25. 25.
    Toyoda, H., Nagashima, T., Hirata, R., Toida, T., Imanari, T.: Sensitive high-performance liquid chromatographic method with fluorometric detection for the determination of heparin and heparan sulfate in biological samples: application to human urinary heparan sulfate. J. Chromatogr. B Biomed. Sci. 704, 19–24 (1997). doi: 10.1016/S0378-4347(97)00478-7 CrossRefGoogle Scholar
  26. 26.
    Cadwallader, A.B., Yost, H.J.: Combinatorial expression patterns of heparan sulfate sulfotransferases in zebrafish: I. The 3-O-sulfotransferase family. Dev. Dyn. 235, 3423–3431 (2006). doi: 10.1002/dvdy.20991 PubMedCrossRefGoogle Scholar
  27. 27.
    Chen, E., Stringer, S.E., Rusch, M.A., Selleck, S.B., Ekker, S.C.: A unique role for 6-O sulfation modification in zebrafish vascular development. Dev. Biol. 284, 364–376 (2005). doi: 10.1016/j.ydbio.2005.05.032 PubMedCrossRefGoogle Scholar
  28. 28.
    Lee, J.S., von der Hardt, S., Rusch, M.A., Stringer, S.E., Stickney, H.L., Talbot, W.S., et al.: Axon sorting in the optic tract requires HSPG synthesis by ext2 (dackel) and extl3 (boxer). Neuron 44, 947–960 (2004). doi: 10.1016/j.neuron.2004.11.029 PubMedCrossRefGoogle Scholar
  29. 29.
    Matthews, H.K., Marchant, L., Carmona-Fontaine, C., Kuriyama, S., Larrain, J., Holt, M.R., Parsons, M., Mayor, R.: Directional migration of neural crest cells in vivo is regulated by Syndecan-4/Rac1 and non-canonical Wnt signaling/RhoA. Development 135, 1771–1780 (2008)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Fuming Zhang
    • 1
  • Zhenqing Zhang
    • 2
  • Robert Thistle
    • 3
  • Lindsey McKeen
    • 3
  • Saori Hosoyama
    • 4
  • Toshihiko Toida
    • 4
  • Robert J. Linhardt
    • 1
    • 2
    • 3
    Email author
  • Patrick Page-McCaw
    • 3
    Email author
  1. 1.Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Biology, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  4. 4.Faculty of Pharmaceutical SciencesChiba UniversityChibaJapan

Personalised recommendations