Advertisement

Glycoconjugate Journal

, 26:75 | Cite as

Elevated expression of L-selectin ligand in lymph node-derived human prostate cancer cells correlates with increased tumorigenicity

  • Prakash Radhakrishnan
  • Ming-Fong Lin
  • Pi-Wan Cheng
Article

Abstract

Human prostate cancer LNCaP cells including C-33 and C-81 cells were originally derived from the lymph nodes of a patient with metastatic prostate cancer. These two cells were employed for characterization of L-selectin ligand and in vitro tumorigenicity, because they mimic the clinical conditions of early and late-stage human prostate cancer. C-81 cells exhibit higher in vitro migratory and invasive properties as compared with C-33 cells. We find that the L-selectin ligand and mucin glycan-associated MECA-79 epitope were elevated in C-81 cells. An increase of these glycotopes positively correlates with elevated tumorigenicity and expression of key glycosyl- and sulfotransferase genes. These results suggest that modulated expression of selective glycogenes correlates with altered tumorigenicity of cancer cells.

Keywords

LNCaP cells MECA-79 L-selectin ligand Glycosyltransferases Sulfotransferase 

Notes

Acknowledgement

We wish to acknowledge the research support of the State of Nebraska-NRI cancer glycobiology program, LB595, and LB506 (PWC), the Department of Defense Postdoctoral Fellowship (PR), and the NIH NCI CCSG P30CA036727-supported molecular biology core facilities. We also thank Ms. Helen Cheng for the expert technical support in cell culture, and Dr. Ajit Varki for providing 293 cells stably transfected with human L-selectin fused with Fc region of human IgG.

References

  1. 1.
    Greenlee, R.T., Hill-Harmon, M.B., Murray, T., Thun, M.: Cancer statistics, 2001. CA Cancer J. Clin. 51, 15–36 (2001)PubMedCrossRefGoogle Scholar
  2. 2.
    Nelson, W.G., De Marzo, A.M., Isaacs, W.B.: Prostate cancer. N. Engl. J. Med. 349, 366–381 (2003). doi: 10.1056/NEJMra021562 PubMedCrossRefGoogle Scholar
  3. 3.
    Borsig, L., Wong, R., Feramisco, J., Nadeau, D.R., Varki, N.M., Varki, A.: Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl. Acad. Sci. USA 98, 3352–3357 (2001). doi: 10.1073/pnas.061615598 PubMedCrossRefGoogle Scholar
  4. 4.
    Imai, Y., Singer, M.S., Fennie, C., Lasky, L.A., Rosen, S.D.: Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor. J. Cell Biol. 113, 1213–1221 (1991). doi: 10.1083/jcb.113.5.1213 PubMedCrossRefGoogle Scholar
  5. 5.
    Hemmerich, S., Butcher, E.C., Rosen, S.D.: Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody. J. Exp. Med. 180, 2219–2226 (1994). doi: 10.1084/jem.180.6.2219 PubMedCrossRefGoogle Scholar
  6. 6.
    Pratt, M.R., Bertozzi, C.R.: Syntheses of 6-sulfo sialyl lewis X glycans corresponding to the L-selectin ligand “sulfoadhesin”. Org. Lett. 6, 2345–2348 (2004). doi: 10.1021/ol0493195 PubMedCrossRefGoogle Scholar
  7. 7.
    Varki, A.: Selectin ligands. Proc. Natl. Acad. Sci. USA 91, 7390–7397 (1994). doi: 10.1073/pnas.91.16.7390 PubMedCrossRefGoogle Scholar
  8. 8.
    Ohyama, C., Tsuboi, S., Fukuda, M.: Dual roles of sialyl lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. EMBO J. 18, 1516–1525 (1999). doi: 10.1093/emboj/18.6.1516 PubMedCrossRefGoogle Scholar
  9. 9.
    Martensson, S., Bigler, S.A., Brown, M., Lange, P.H., Brawer, M.K., Hakomori, S.: Sialyl-lewis(x) and related carbohydrate antigens in the prostate. Hum. Pathol. 26, 735–739 (1995). doi: 10.1016/0046-8177(95)90220-1 PubMedCrossRefGoogle Scholar
  10. 10.
    Kannagi, R.: Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj. J. 14, 577–584 (1997). doi: 10.1023/A:1018532409041 PubMedCrossRefGoogle Scholar
  11. 11.
    Yamaguchi, A., Ding, K., Maehara, M., Goi, T., Nakagawara, G.: Expression of nm23-H1 gene and sialyl lewis X antigen in breast cancer. Oncology 55, 357–362 (1998). doi: 10.1159/000011878 PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang, J., Nakayama, J., Ohyama, C., Suzuki, M., Suzuki, A., Fukuda, M., et al.: Sialyl lewis X-dependent lung colonization of B16 melanoma cells through a selectin-like endothelial receptor distinct from E- or P-selectin. Cancer Res. 62, 4194–4198 (2002)PubMedGoogle Scholar
  13. 13.
    McEver, R.P.: Selectin–carbohydrate interactions during inflammation and metastasis. Glycoconj. J. 14, 585–591 (1997). doi: 10.1023/A:1018584425879 PubMedCrossRefGoogle Scholar
  14. 14.
    Igawa, T., Lin, F.F., Lee, M.S., Karan, D., Batra, S.K., Lin, M.F.: Establishment and characterization of androgen-independent human prostate cancer LNCaP cell model. Prostate 50, 222–235 (2002). doi: 10.1002/pros.10054 PubMedCrossRefGoogle Scholar
  15. 15.
    Lin, M.F., Lee, M.S., Zhou, X.W., Andressen, J.C., Meng, T.C., Johansson, S.L., et al.: Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J. Urol. 166, 1943–1950 (2001). doi: 10.1016/S0022-5347(05)65725-4 PubMedCrossRefGoogle Scholar
  16. 16.
    Borsig, L., Wong, R., Hynes, R.O., Varki, N.M., Varki, A.: Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc. Natl. Acad. Sci. USA 99, 2193–2198 (2002). doi: 10.1073/pnas.261704098 PubMedCrossRefGoogle Scholar
  17. 17.
    Puri, K.D., Finger, E.B., Gaudernack, G., Springer, T.A., Sialomucin, C.D.: 34 is the major L-selectin ligand in human tonsil high endothelial venules. J. Cell Biol. 131, 261–270 (1995). doi: 10.1083/jcb.131.1.261 PubMedCrossRefGoogle Scholar
  18. 18.
    Streeter, P.R., Rouse, B.T., Butcher, E.C.: Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107, 1853–1862 (1988). doi: 10.1083/jcb.107.5.1853 PubMedCrossRefGoogle Scholar
  19. 19.
    Horoszewicz, J.S., Leong, S.S., Chu, T.M., Wajsman, Z.L., Friedman, M., Papsidero, L., et al.: The LNCaP cell line—a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37, 115–132 (1980)PubMedGoogle Scholar
  20. 20.
    Li, Y., Koeneman, K.S.: Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Urol. Oncol. 26, 106–107 (2008). doi: 10.1016/j.urolonc.2007.11.019 Google Scholar
  21. 21.
    Sun, A., Tang, J., Hong, Y., Song, J., Terranova, P.F., Thrasher, J.B., et al.: Androgen receptor-dependent regulation of bcl-xL expression: Implication in prostate cancer progression. Prostate 68, 453–461 (2008). doi: 10.1002/pros.20723 PubMedCrossRefGoogle Scholar
  22. 22.
    Unni, E., Sun, S., Nan, B., McPhaul, M.J., Cheskis, B., Mancini, M.A., et al.: Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res. 64, 7156–7168 (2004). doi: 10.1158/0008-5472.CAN-04-1121 PubMedCrossRefGoogle Scholar
  23. 23.
    Veeramani, S., Yuan, T.C., Chen, S.J., Lin, F.F., Petersen, J.E., Shaheduzzaman, S., et al.: Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr. Relat. Cancer 12, 805–822 (2005). doi: 10.1677/erc.1.00950 PubMedCrossRefGoogle Scholar
  24. 24.
    Stewart, L.V., Lyles, B., Lin, M.F., Weigel, N.L.: Vitamin D receptor agonists induce prostatic acid phosphatase to reduce cell growth and HER-2 signaling in LNCaP-derived human prostate cancer cells. J. Steroid Biochem. Mol. Biol. 97, 37–46 (2005). doi: 10.1016/j.jsbmb.2005.06.011 PubMedCrossRefGoogle Scholar
  25. 25.
    Kawashima, H., Petryniak, B., Hiraoka, N., Mitoma, J., Huckaby, V., Nakayama, J., et al.: N-acetylglucosamine-6-O-sulfotransferases 1 and 2 cooperatively control lymphocyte homing through L-selectin ligand biosynthesis in high endothelial venules. Nat. Immunol. 6, 1096–1104 (2005). doi: 10.1038/ni1259 PubMedCrossRefGoogle Scholar
  26. 26.
    Streeter, P.R., Rouse, B.T., Butcher, E.C.: Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107, 1853–1862 (1988). doi: 10.1083/jcb.107.5.1853 PubMedCrossRefGoogle Scholar
  27. 27.
    Mitoma, J., Bao, X., Petryanik, B., Schaerli, P., Gauguet, J.M., Yu, S.Y., et al.: Critical functions of N-glycans in L-selectin-mediated lymphocyte homing and recruitment. Nat. Immunol. 8, 409–418 (2007). doi: 10.1038/ni1442 PubMedCrossRefGoogle Scholar
  28. 28.
    Williams, D., Longmore, G., Matta, K.L., Schachter, H.: Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-GlcNAc:Galß1–3GalNAc(GlcNAc-GalNAc)β6-N-acetylglucosaminyltransferase. J. Biol. Chem. 255, 11253–11261 (1980)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Prakash Radhakrishnan
    • 1
  • Ming-Fong Lin
    • 1
    • 3
  • Pi-Wan Cheng
    • 1
    • 2
    • 3
  1. 1.Department of Biochemistry and Molecular Biology, College of Medicine, 985870, Nebraska Medical CenterUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Pharmaceutical Sciences, College of PharmacyUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations