Glycoconjugate Journal

, Volume 26, Issue 3, pp 301–311 | Cite as

Survey of O-GlcNAc level variations in Xenopus laevis from oogenesis to early development

  • Vanessa Dehennaut
  • Tony Lefebvre
  • Yves Leroy
  • Jean-Pierre Vilain
  • Jean-Claude Michalski
  • Jean-François Bodart


Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I–V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.


O-GlcNAc OGT Xenopus laevis Oogenesis Meiosis Embryogenesis 



This work was granted by the “Centre National de la Recherche Scientifique”, the “Association pour la Recherche contre le Cancer” and the “Université des Sciences et Technologie de Lille I”. We thank Arlette Lescuyer-Rousseau for technical assistance. VD is a recipient of a fellowship from the “Ministère de la Recherche et de l’Enseignement”.


  1. 1.
    Roos, M.D., Hanover, J.A.: Structure of O-linked GlcNAc transferase: mediator of glycan-dependent signaling. Biochem. Biophys. Res. Commun. 271, 275–280 (2000). doi: 10.1006/bbrc.2000.2600 PubMedCrossRefGoogle Scholar
  2. 2.
    Iyer, S.P., Hart, G.W.: Dynamic nuclear and cytoplasmic glycosylation: enzymes of O-GlcNAc cycling. Biochemistry. 42, 2493–2499 (2003). doi: 10.1021/bi020685a PubMedCrossRefGoogle Scholar
  3. 3.
    Lehman, D.M., Fu, D.J., Freeman, A.B., Hunt, K.J., Leach, R.J., Johnson-Pais, T., et al.: A single nucleotide polymorphism in MGEA5 encoding O-GlcNAc-selective N-acetyl-beta-d glucosaminidase is associated with type 2 diabetes in Mexican Americans. Diabetes. 54, 1214–1221 (2005). doi: 10.2337/diabetes.54.4.1214 PubMedCrossRefGoogle Scholar
  4. 4.
    Zachara, N.E., Hart, G.W.: Cell signaling, the essential role of O-GlcNAc!. Biochim. Biophys. Acta. 1761, 599–617 (2006)PubMedGoogle Scholar
  5. 5.
    Slawson, C., Zachara, N.E., Vosseller, K., Cheung, W.D., Lane, M.D., Hart, G.W.: Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis. J. Biol. Chem. 280, 32944–32956 (2005). doi: 10.1074/jbc.M503396200 PubMedCrossRefGoogle Scholar
  6. 6.
    Dehennaut, V., Lefebvre, T., Sellier, C., Leroy, Y., Gross, B., Walker, S., et al.: O-linked N-acetylglucosaminyltransferase inhibition prevents G2/M transition in Xenopus laevis oocytes. J. Biol. Chem. 282, 12527–12536 (2007). doi: 10.1074/jbc.M700444200 PubMedCrossRefGoogle Scholar
  7. 7.
    Slawson, C., Shafii, S., Amburgey, J., Potter, R.: Characterization of the O-GlcNAc protein modification in Xenopus laevis oocyte during oogenesis and progesterone-stimulated maturation. Biochim. Biophys. Acta 1573, 121–129 (2002)PubMedGoogle Scholar
  8. 8.
    Hanover, J.A., Forsythe, M.E., Hennessey, P.T., Brodigan, T.M., Love, D.C., Ashwell, G., et al.: Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc. Natl. Acad. Sci. U. S. A. 102, 11266–11271 (2005). doi: 10.1073/pnas.0408771102 PubMedCrossRefGoogle Scholar
  9. 9.
    O'Donnell, N., Zachara, N.E., Hart, G.W., Marth, J.D.: Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680–1690 (2004). doi: 10.1128/MCB.24.4.1680-1690.2004 PubMedCrossRefGoogle Scholar
  10. 10.
    Shafi, R., Iyer, S.P., Ellies, L.G., O'Donnell, N., Marek, K.W., Chui, D., et al.: The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc. Natl. Acad. Sci. USA. 97, 5735–5739 (2000). doi: 10.1073/pnas.100471497 PubMedCrossRefGoogle Scholar
  11. 11.
    Forsythe, M.E., Love, D.C., Lazarus, B.D., Kim, E.J., Prinz, W.A., Ashwell, G.: Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc. Natl. Acad. Sci. U. S. A. 103, 11952–11957 (2006). doi: 10.1073/pnas.0601931103 PubMedCrossRefGoogle Scholar
  12. 12.
    Sohn, K.C., Do, S.I.: Transcriptional regulation and O-GlcNAcylation activity of zebrafish OGT during embryogenesis. Biochem. Biophys. Res. Commun. 337, 256–263 (2005). doi: 10.1016/j.bbrc.2005.09.049 PubMedCrossRefGoogle Scholar
  13. 13.
    Gurdon, J.B., Hopwood, N.: The introduction of Xenopus laevis into developmental biology: of empire, pregnancy testing and ribosomal genes. Int. J. Dev. Biol. 44, 43–50 (2000)PubMedGoogle Scholar
  14. 14.
    Matova, N., Cooley, L.: Comparative aspects of animal oogenesis. Dev. Biol. 231, 291–320 (2001). doi: 10.1006/dbio.2000.0120 PubMedCrossRefGoogle Scholar
  15. 15.
    Jessus, C., Ozon, R.: How does Xenopus oocyte acquire its competence to undergo meiotic maturation? Biol. Cell. 96, 187–192 (2004). doi: 10.1016/j.biolcel.2003.12.007 PubMedCrossRefGoogle Scholar
  16. 16.
    Masui, Y., Wang, P.: Cell cycle transition in early embryonic development of Xenopus laevis. Biol. Cell 90, 537–548 (1998). doi: 10.1016/S0248-4900(99)80011-2 PubMedCrossRefGoogle Scholar
  17. 17.
    Saka, Y., Smith, J.C.: Spatial and temporal patterns of cell division during early Xenopus embryogenesis. Dev. Biol. 229, 307–318 (2001). doi: 10.1006/dbio.2000.0101 PubMedCrossRefGoogle Scholar
  18. 18.
    Klein, S.L., Strausberg, R.L., Wagner, L., Pontius, J., Clifton, S.W., Richardson, P.: Genetic and genomic tools for Xenopus research: the NIH Xenopus initiative. Dev. Dyn. 225, 384–391 (2002). doi: 10.1002/dvdy.10174 PubMedCrossRefGoogle Scholar
  19. 19.
    Dumont, J.N.: Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–179 (1972). doi: 10.1002/jmor.1051360203 PubMedCrossRefGoogle Scholar
  20. 20.
    Nieuwkoop, P.D. and Faber, J. (Eds): Normal table of Xenopus laevis (Daudin). Garland Punlishing, New York (1994).Google Scholar
  21. 21.
    Bodart, J.F., Baert, F.Y., Sellier, C., Duesbery, N.S., Flament, S., Vilain, J.P.: Differential roles of p39Mos-Xp42Mpk1 cascade proteins on Raf1 phosphorylation and spindle morphogenesis in Xenopus oocytes. Dev. Biol. 283, 373–383 (2005). doi: 10.1016/j.ydbio.2005.04.031 PubMedCrossRefGoogle Scholar
  22. 22.
    Lefebvre, T., Baert, F., Bodart, J.F., Flament, S., Michalski, J.C., Vilain, J.P.: Modulation of O-GlcNAc glycosylation during Xenopus oocyte maturation. J. Cell. Biochem. 93, 999–1010 (2004). doi: 10.1002/jcb.20242 PubMedCrossRefGoogle Scholar
  23. 23.
    Dehennaut, V., Hanoulle, X., Bodart, J.F., Vilain, J.P., Michalski, J.C., Landrieu, I.: Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry. Biochem. Biophys. Res. Commun. 369, 539–546 (2008). doi: 10.1016/j.bbrc.2008.02.063 PubMedCrossRefGoogle Scholar
  24. 24.
    Sato, K., Fukami, Y., Stith, B.J.: Signal transduction pathways leading to Ca2+ release in a vertebrate model system: lessons from Xenopus eggs. Semin. Cell Dev. Biol. 17, 285–292 (2006). doi: 10.1016/j.semcdb.2006.02.008 PubMedCrossRefGoogle Scholar
  25. 25.
    Glotzer, M., Murray, A.W., Kirschner, M.W.: Cyclin is degraded by the ubiquitin pathway. Nature. 349, 132–138 (1991). doi: 10.1038/349132a0 PubMedCrossRefGoogle Scholar
  26. 26.
    Nishizawa, M., Furuno, N., Okazaki, K., Tanaka, H., Ogawa, Y., Sagata, N.: Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: possible significance of natural selection for Pro2 in Mos. EMBO J. 12, 4021–4027 (1993)PubMedGoogle Scholar
  27. 27.
    Bodart, J.F., Bechard, D., Bertout, M., Gannon, J., Rousseau, A., Vilain, J.P.: Activation of Xenopus eggs by the kinase inhibitor 6-DMAP suggests a differential regulation of cyclin B and p39(mos) proteolysis. Exp. Cell Res. 253, 413–421 (1999). doi: 10.1006/excr.1999.4662 PubMedCrossRefGoogle Scholar
  28. 28.
    Miller, J.R., Moon, R.T.: Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev. 10, 2527–2539 (1996). doi: 10.1101/gad.10.20.2527 PubMedCrossRefGoogle Scholar
  29. 29.
    Fang, B., Miller, M.W.: Use of galactosyltransferase to assess the biological function of O-linked N-acetyl-d-glucosamine: a potential role for O-GlcNAc during cell division. Exp. Cell Res. 263, 243–253 (2001). doi: 10.1006/excr.2000.5110 PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, J., Liu, X.J.: Progesterone inhibits protein kinase A (PKA) in Xenopus oocytes: demonstration of endogenous PKA activities using an expressed substrate. J. Cell Sci. 117, 5107–5116 (2004). doi: 10.1242/jcs.01383 PubMedCrossRefGoogle Scholar
  31. 31.
    Chang, Q., Su, K., Baker, J.R., Yang, X., Paterson, A.J., Kudlow, J.E.: Phosphorylation of human glutamine:fructose-6-phosphate amidotransferase by cAMP-dependent protein kinase at serine 205 blocks the enzyme activity. J. Biol. Chem. 275, 21981–21987 (2000). doi: 10.1074/jbc.M001049200 PubMedCrossRefGoogle Scholar
  32. 32.
    Sheets, M.D., Wu, M., Wickens, M.: Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature 374, 511–516 (1995). doi: 10.1038/374511a0 PubMedCrossRefGoogle Scholar
  33. 33.
    Radford, H.E., Meijer, H.A., de Moor, C.H.: Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochim. Biophys. Acta 1779, 217–229 (2008)Google Scholar
  34. 34.
    Datta, B., Ray, M.K., Chakrabarti, D., Wylie, D.E., Gupta, N.K.: Glycosylation of eukaryotic peptide chain initiation factor 2 (eIF-2)-associated 67-kDa polypeptide (p67) and its possible role in the inhibition of the eIF-2 kinase-catalyzed phosphorylation of the eIF-2 alpha subunit. J. Biol. Chem. 264, 20620–20624 (1989)PubMedGoogle Scholar
  35. 35.
    Heasman, J., Crawford, A., Goldstone, K., Garner-Hamrick, P., Gumbiner, B., McCrea, P., et al.: Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791–803 (1994). doi: 10.1016/0092-8674(94)90069-8 PubMedCrossRefGoogle Scholar
  36. 36.
    Lubas, W.A., Hanover, J.A.: Functional expression of O-linked GlcNAc transferase. Domain structure and substrate specificity. J. Biol. Chem. 275, 10983–10988 (2000). doi: 10.1074/jbc.275.15.10983 PubMedCrossRefGoogle Scholar
  37. 37.
    Duncan, T., Su, T.T.: Embryogenesis: coordinating cell division with gastrulation. Curr. Biol. 14, R305–R307 (2004). doi: 10.1016/j.cub.2004.03.050 PubMedCrossRefGoogle Scholar
  38. 38.
    Dworkin, M.B., Dworkin-Rastl, E.: Metabolic regulation during early frog development: glycogenic flux in Xenopus oocytes, eggs, and embryos. Dev. Biol. 132, 512–523 (1989). doi: 10.1016/0012-1606(89)90246-7 PubMedCrossRefGoogle Scholar
  39. 39.
    Dworkin, M.B., Dworkin-Rastl, E.: Glycogen breakdown in cleaving Xenopus embryos is limited by ADP. Mol. Reprod. Dev. 32, 354–362 (1992). doi: 10.1002/mrd.1080320408 PubMedCrossRefGoogle Scholar
  40. 40.
    Lefebvre, T., Guinez, C., Dehennaut, V., Beseme-Dekeyser, O., Morelle, W., Michalski, J.C.: Does O-GlcNAc play a role in neurodegenerative diseases? Expert Rev. Proteomics. 2, 265–275 (2005). doi: 10.1586/14789450.2.2.265 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vanessa Dehennaut
    • 1
    • 2
  • Tony Lefebvre
    • 1
  • Yves Leroy
    • 1
  • Jean-Pierre Vilain
    • 2
  • Jean-Claude Michalski
    • 1
  • Jean-François Bodart
    • 2
    • 3
  1. 1.UMR-CNRS 8576, Unité de Glycobiologie Structurale et FonctionnelleVilleneuve d’AscqFrance
  2. 2.Laboratoire de Régulation des Signaux de DivisionVilleneuve d’Ascq CedexFrance
  3. 3.Institut de Recherches Interdisciplinaires CNRS-USR 3078groupe des nanosystèmes biologiques, USTLVilleneuve d’Ascq cedexFrance

Personalised recommendations