Glycoconjugate Journal

, Volume 26, Issue 3, pp 385–395 | Cite as

Revealing the anti-HRP epitope in Drosophila and Caenorhabditis

  • Katharina Paschinger
  • Dubravko Rendić
  • Iain B. H. Wilson


Antibodies are very often used as specific cell and/or tissue markers. An example of this is anti-horseradish peroxidase (HRP), an antibody raised against a plant glycoprotein, which was shown some twenty-five years ago to specifically stain neural tissue in an animal, Drosophila melanogaster. This peculiar finding was later expanded to other invertebrate species including Caenorhabditis elegans, which were also shown to bear anti-HRP epitopes. Initial experiments indicated that the epitopes recognised by anti-HRP in invertebrates are of carbohydrate nature. Indeed, more recent experiments have characterised relevant core α1-3-fucosylated N-glycan structures that act as epitopes in various model and parasitic organisms. Moreover, a number of enzymes required for the synthesis of such structures have been identified. Over the years, medically-relevant roles of these structures have become apparent as regards allergenicity and immunoregulation. Although major advances have been made in understanding of the underlying mechanisms and structures related to the anti-HRP epitope, the in vivo role of the relevant epitopes in neural and other tissues is yet to be resolved. Current understanding of the anti-HRP epitopes synthesis and their relevance is discussed and elaborated.


Anti-HRP N-glycan Fucose Invertebrates Neuron Allergy Immunogenic 



N-acetylglucosaminyltransferase I


horseradish peroxidase






Manα1–6(Manα1–3)Manβ1–4GlcNAcβ1–4(Fucα1–6)(Fucα1–3)GlcNAc (see also Fig. 5)


Manα1–6(Manα1–3)(Xylβ1–2)Manβ1–4GlcNAcβ1–4(Fucα1–3)GlcNAc (see also Fig. 3)








  1. 1.
    Jan, L.Y., Jan, Y.N.: Antibodies to horseradish peroxidase as specific neuronal markers in Drosophila and in grasshopper embryos. Proc. Natl. Acad. Sci. U.S.A. 79, 2700–2704 (1982)PubMedCrossRefGoogle Scholar
  2. 2.
    Salvaterra, P.M., Bournias-Vardiabasis, N., Nair, T., Hou, G., Lieu, C.: In vitro neuronal differentiation of Drosophila embryo cells. J. Neurosci. 7, 10–22 (1987)PubMedGoogle Scholar
  3. 3.
    Wang, X., Sun, B., Yasuyama, K., Salvaterra, P.M.: Biochemical analysis of proteins recognised by anti-HRP antibodies in Drosophila melanogaster: identification of neuron specific and male specific glycoproteins. Insect Biochem. Mol. Biol. 24, 233–242 (1994)PubMedCrossRefGoogle Scholar
  4. 4.
    Siddiqui, S.S., Culotti, J.G.: Examination of neurons in wild type and mutants of Caenorhabditis elegans using antibodies to horseradish peroxidase. J. Neurogenet. 7, 193–211 (1991)PubMedCrossRefGoogle Scholar
  5. 5.
    Haase, A., Stern, M., Wachtler, K., Bicker, G.: A tissue-specific marker of Ecdysozoa. Dev. Genes Evol. 211, 428–433 (2001)PubMedCrossRefGoogle Scholar
  6. 6.
    Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff, R.A., Lake, J.A.: Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997)PubMedCrossRefGoogle Scholar
  7. 7.
    Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., de Rosa, R.: The new animal phylogeny: reliability and implications. Proc. Natl. Acad. Sci. U.S.A. 97, 4453–4456 (2000)PubMedCrossRefGoogle Scholar
  8. 8.
    Katz, F., Moats, W., Jan, Y.N.: A carbohydrate epitope expressed uniquely on the cell surface of Drosophila neurons is altered in the mutant nac (neurally altered carbohydrate). EMBO J. 7, 3471–3477 (1988)PubMedGoogle Scholar
  9. 9.
    Snow, P.M., Patel, N.H., Harrelson, A.L., Goodman, C.S.: Neural-specific carbohydrate moiety shared by many surface glycoproteins in Drosophila and grasshopper embyros. J. Neurosci. 7, 4137–4144 (1987)PubMedGoogle Scholar
  10. 10.
    Yasuda, Y., Takahashi, N., Murachi, T.: The composition and structure of carbohydrate moiety of stem bromelain. Biochemistry 9, 25–32 (1970)PubMedCrossRefGoogle Scholar
  11. 11.
    Ishihara, H., Takahashi, N., Oguri, S., Tejima, S.: Complete structure of the carbohydrate moiety of stem bromelain. An application of the almond glycopeptidase for structural studies of glycopeptides. J. Biol. Chem. 254, 10715–10719 (1979)PubMedGoogle Scholar
  12. 12.
    Kurosaka, A., Yano, A., Itoh, N., Kuroda, Y., Nakagawa, T., Kawasaki, T.: The structure of a neural specific carbohydrate epitope of horseradish peroxidase recognized by anti-horseradish peroxidase antiserum. J. Biol. Chem. 266, 4168–4172 (1991)PubMedGoogle Scholar
  13. 13.
    Veitch, N.C.: Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65, 249–259 (2004)PubMedCrossRefGoogle Scholar
  14. 14.
    Shannon, L.M., Kay, E., Lew, J.Y.: Peroxidase isozymes from horseradish roots. I. Isolation and physical properties. J. Biol. Chem. 241, 2166–2172 (1966)PubMedGoogle Scholar
  15. 15.
    Wuhrer, M., Balog, C.I., Koeleman, C.A., Deelder, A.M., Hokke, C.H.: New features of site-specific horseradish peroxidase (HRP) glycosylation uncovered by nano-LC-MS with repeated ion-isolation/fragmentation cycles. Biochim. Biophys. Acta 1723, 229–239 (2005)PubMedGoogle Scholar
  16. 16.
    Yang, B.Y., Gray, J.S.S., Montgomery, R.: The glycans of horseradish peroxidase. Carbohydr. Res. 287, 203–212 (1996)PubMedCrossRefGoogle Scholar
  17. 17.
    Takahashi, N., Lee, K.B., Nakagawa, H., Tsukamoto, Y., Masuda, K., Lee, Y.C.: New N-glycans in horseradish peroxidase. Anal. Biochem. 255, 183–187 (1998)PubMedCrossRefGoogle Scholar
  18. 18.
    Wilson, I.B.H., Harthill, J.E., Mullin, N.P., Ashford, D.A., Altmann, F.: Core α1,3-fucose is a key part of the epitope recognized by antibodies reacting against plant N-linked oligosaccharides and is present in a wide variety of plant extracts. Glycobiology 8, 651–661 (1998)PubMedCrossRefGoogle Scholar
  19. 19.
    Jin, C., Bencúrová, M., Borth, N., Ferko, B., Jensen-Jarolim, E., Altmann, F., Hantusch, B.: Immunoglobulin G specifically binding plant N-glycans with high affinity could be generated in rabbits but not in mice. Glycobiology 16, 349–357 (2006)PubMedCrossRefGoogle Scholar
  20. 20.
    Pöltl, G., Ahrazem, O., Paschinger, K., Ibañez, M.D., Salcedo, G., Wilson, I.B.H.: Molecular and immunological characterization of the glycosylated orange allergen Cit s 1. Glycobiology 17, 220–230 (2007)PubMedCrossRefGoogle Scholar
  21. 21.
    Aalberse, R.C., Koshte, V., Clemens, J.G.J.: Cross-reactions between vegetable foods, pollen and bee venom due to IgE antibodies to a ubiquitous carbohydrate determinant. Int. Arch. Allergy Appl. Immunol. 66(Suppl 1), 259–260 (1981)Google Scholar
  22. 22.
    Garcia-Casado, G., Sanchez-Monge, R., Chrispeels, M.J., Armentia, A., Salcedo, G., Gomez, L.: Role of complex asparagine-linked glycans in the allergenicity of plant glycoproteins. Glycobiology 6, 471–477 (1996)PubMedCrossRefGoogle Scholar
  23. 23.
    Tretter, V., Altmann, F., Kubelka, V., März, L., Becker, W.M.: Fucose α1,3-linked to the core region of glycoprotein N-glycans creates an important epitope for IgE from honeybee venom allergic individuals. Int. Arch. Allergy Immunol. 102, 259–266 (1993)PubMedGoogle Scholar
  24. 24.
    Wilson, I.B.H., Zeleny, R., Kolarich, D., Staudacher, E., Stroop, C.J.M., Kamerling, J.P., Altmann, F.: Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, α1,3-fucose and xylose substitutions. Glycobiology 11, 261–274 (2001)PubMedCrossRefGoogle Scholar
  25. 25.
    Wilson, I.B.H., Altmann, F.: Structural analysis of N-glycans from allergenic grass, ragweed and tree pollens: core α1,3-linked fucose and xylose present in all pollens examined. Glycoconj. J. 15, 1055–1070 (1998)PubMedCrossRefGoogle Scholar
  26. 26.
    Faye, L., Chrispeels, M.J.: Common antigenic determinants in the glycoproteins of plants, molluscs and insects. Glycoconj. J. 5, 245–256 (1988)CrossRefGoogle Scholar
  27. 27.
    Koshte, V.L., Kagen, S.L., Aalberse, R.C.: Cross-reactivity of IgE antibodies to caddis fly with Arthropoda and Mollusca. J. Allergy Clin. Immunol. 84, 174–183 (1989)PubMedCrossRefGoogle Scholar
  28. 28.
    Prenner, C., Mach, L., Glössl, J., März, L.: The antigenicity of the carbohydrate moiety of an insect glycoprotein, honey-bee (Apis mellifera) venom phospholipase A2. The role of α1,3-fucosylation of the asparagine-bound N-acetylglucosamine. Biochem J 284, 377–380 (1992)PubMedGoogle Scholar
  29. 29.
    Fötisch, K., Vieths, S.: N- and O-linked oligosaccharides of allergenic glycoproteins. Glycoconj J 18, 373–390 (2001)PubMedCrossRefGoogle Scholar
  30. 30.
    Lauriere, M., Lauriere, C., Chrispeels, M.J., Johnson, K.D., Sturm, A.: Characterization of a xylose-specific antiserum that reacts with the complex asparagine-linked glycans of extracellular and vacuolar glycoproteins. Plant Physiol. 90, 1182–1188 (1989)PubMedCrossRefGoogle Scholar
  31. 31.
    Ramirez-Soto, D., Poretz, R.D.: The (1®3)-linked α-L-fucosyl group of the N-glycans of the Wistaria floribunda lectins is recognized by a rabbit antiserum. Carbohydr. Res. 213, 27–36 (1991)PubMedCrossRefGoogle Scholar
  32. 32.
    Kaladas, P.M., Kabat, E.A., Iglesias, J.L., Lis, H., Sharon, N.: Immunochemical studies on the combining site of the D-galactose/N-acetyl-D-galactosamine specific lectin from Erythrina cristagalli seeds. Arch. Biochem. Biophys. 217, 624–637 (1982)PubMedCrossRefGoogle Scholar
  33. 33.
    Snow, P.M., Zinn, K., Harrelson, A.L., McAllister, L., Schilling, J., Bastiani, M.J., Makk, G., Goodman, C.S.: Characterization and cloning of fasciclin I and fasciclin II glycoproteins in the grasshopper. Proc. Natl. Acad. Sci. U.S.A. 85, 5291–5295 (1988)PubMedCrossRefGoogle Scholar
  34. 34.
    Desai, C.J., Popova, E., Zinn, K.: A Drosophila receptor tyrosine phosphatase expressed in the embryonic CNS and larval optic lobes is a member of the set of proteins bearing the “HRP” carbohydrate epitope. J. Neurosci. 14, 7272–7283 (1994)PubMedGoogle Scholar
  35. 35.
    Sun, B., Salvaterra, P.M.: Characterization of nervana, a Drosophila melanogaster neuron-specific glycoprotein antigen recognized by anti-horseradish peroxidase antibodies. J. Neurochem. 65, 434–443 (1995)PubMedGoogle Scholar
  36. 36.
    Sun, B., Wang, W., Salvaterra, P.M.: Functional analysis and tissue-specific expression of Drosophila Na+, K+-ATPase subunits. J. Neurochem. 71, 142–151 (1998)PubMedCrossRefGoogle Scholar
  37. 37.
    Seppo, A., Matani, P., Sharrow, M., Tiemeyer, M.: Induction of neuron-specific glycosylation by Tollo/Toll-8, a Drosophila Toll-like receptor expressed in non-neural cells. Development 130, 1439–1448 (2003)PubMedCrossRefGoogle Scholar
  38. 38.
    Sarkar, M., Leventis, P.A., Silvescu, C.I., Reinhold, V.N., Schachter, H., Boulianne, G.L.: Null mutations in Drosophila N-acetylglucosaminyltransferase I produce defects in locomotion and a reduced lifespan. J. Biol. Chem. 281, 12776–12785 (2006)PubMedCrossRefGoogle Scholar
  39. 39.
    Okajima, T., Reddy, B., Matsuda, T., Irvine, K.D.: Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling. BMC Biol. 6, 1 (2008)PubMedCrossRefGoogle Scholar
  40. 40.
    Rhomberg, S., Fuchsluger, C., Rendić, D., Paschinger, K., Jantsch, V., Kosma, P., Wilson, I.B.H.: Reconstitution in vitro of the GDP-fucose biosynthetic pathways of Caenorhabditis elegans and Drosophila melanogaster. FEBS J. 273, 2244–2256 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    Dubruille, R., Laurencon, A., Vandaele, C., Shishido, E., Coulon-Bublex, M., Swoboda, P., Couble, P., Kernan, M., Durand, B.: Drosophila regulated factor X is necessary for ciliated sensory neuron differentiation. Development 129, 5847–5498 (2002)CrossRefGoogle Scholar
  42. 42.
    Whitlock, K.E.: Development of Drosophila wing sensory neurons in mutants with missing or modified cell surface molecules. Development 117, 1251–1260 (1993)PubMedGoogle Scholar
  43. 43.
    Staudacher, E., Altmann, F., März, L., Hård, K., Kamerling, J.P., Vliegenthart, J.F.G.: α1–6(α 1–3)-Difucosylation of the asparagine-bound N-acetylglucosamine in honeybee venom phospholipase A2. Glycoconj. J. 9, 82–85 (1992)PubMedCrossRefGoogle Scholar
  44. 44.
    Staudacher, E., Altmann, F., Glössl, J., März, L., Schachter, H., Kamerling, J.P., Hård, K., Vliegenthart, J.F.G.: GDP-fucose: β-N-acetylglucosamine (Fuc to (Fucα1→6GlcNAc)-Asn-peptide) α1→3-fucosyltransferase activity in honeybee (Apis mellifica) venom glands—the difucosylation of asparagine-bound N-acetylglucosamine. Eur. J. Biochem. 199, 745–751 (1991)PubMedCrossRefGoogle Scholar
  45. 45.
    Rendić, D., Klaudiny, J., Stemmer, U., Schmidt, J., Paschinger, K., Wilson, I.B.H.: Towards abolition of immunogenic structures in insect cells: characterisation of a honeybee multi-gene family reveals both an allergy-related core α1,3-fucosyltransferase and the first insect Lewis histo-blood group-related antigen synthesising enzyme. Biochem. J. 402, 105–115 (2007)PubMedCrossRefGoogle Scholar
  46. 46.
    Staudacher, E., Kubelka, V., März, L.: Distinct N-glycan fucosylation potentials of three lepidopteran cell lines. Eur. J. Biochem. 207, 987–993 (1992)PubMedCrossRefGoogle Scholar
  47. 47.
    Kubelka, V., Altmann, F., Kornfeld, G., März, L.: Structures of the N-linked oligosaccharides of the membrane glycoproteins from three lepidopteran cell lines (Sf-21, IZD-Mb-0503, Bm-N). Arch. Biochem. Biophys. 308, 148–157 (1994)PubMedCrossRefGoogle Scholar
  48. 48.
    Rendić, D., Wilson, I.B.H., Lubec, G., Gutternigg, M., Altmann, F., Leonard, R.: Adaptation of the “in-gel release method” to N-glycome analysis of low-milligram amounts of material. Electrophoresis 28, 4484–4492 (2007)PubMedCrossRefGoogle Scholar
  49. 49.
    Hsu, T.A., Takahashi, N., Tsukamoto, Y., Kato, K., Shimada, I., Masuda, K., Whiteley, E.M., Fan, J.Q., Lee, Y.C., Betenbaugh, M.J.: Differential N-glycan patterns of secreted and intracellular IgG produced in Trichoplusia ni cells. J. Biol. Chem. 272, 9062–9070 (1997)PubMedCrossRefGoogle Scholar
  50. 50.
    Ding, H., Griesel, C., Nimtz, M., Conradt, H.S., Weich, H.A., Jager, V.: Molecular cloning, expression, purification, and characterization of soluble full-length, human interleukin-3 with a baculovirus-insect cell expression system. Protein Expr. Purif. 31, 34–41 (2003)PubMedCrossRefGoogle Scholar
  51. 51.
    Hancock, K., Narang, S., Pattabhi, S., Yushak, M.L., Khan, A., Lin, S.C., Plemons, R., Betenbaugh, M.J., Tsang, V.C.: False positive reactivity of recombinant, diagnostic, glycoproteins produced in High Five insect cells: effect of glycosylation. J. Immunol. Methods 330, 130–136 (2008)PubMedCrossRefGoogle Scholar
  52. 52.
    Rendić, D., Wilson, I.B.H., Paschinger, K.: The glycosylation capacity of insect cells. Croatica Chimica Acta 81, 7–21 (2008)Google Scholar
  53. 53.
    Williams, P.J., Wormald, M.R., Dwek, R.A., Rademacher, T.W., Parker, G.F., Roberts, D.R.: Characterisation of oligosaccharides from Drosophila melanogaster glycoproteins. Biochim. Biophys. Acta Gen. Subj. 1075, 146–153 (1991)CrossRefGoogle Scholar
  54. 54.
    Fabini, G., Freilinger, A., Altmann, F., Wilson, I.B.H.: Identification of core α1,3-fucosylated glycans and the requisite fucosyltransferase in Drosophila melanogaster. Potential basis of the neural anti-horseradish peroxidase epitope. J. Biol. Chem. 276, 28058–28067 (2001)PubMedCrossRefGoogle Scholar
  55. 55.
    Rendić, D., Linder, A., Paschinger, K., Borth, N., Wilson, I.B.H., Fabini, G.: Modulation of neural carbohydrate epitope expression in Drosophila melanogaster cells. J. Biol. Chem. 281, 3343–3353 (2006)PubMedCrossRefGoogle Scholar
  56. 56.
    Bouyain, S., Silk, N.J., Fabini, G., Drickamer, K.: An endogenous Drosophila receptor for glycans bearing α1,3-linked core fucose residues. J. Biol. Chem. 277, 22566–22572 (2002)PubMedCrossRefGoogle Scholar
  57. 57.
    Saudan, P., Hauck, K., Soller, M., Choffat, Y., Ottiger, M., Spörri, M., Ding, Z., Hess, D., Gehrig, P.M., Klauser, S., Hunziker, P., Kubli, E.: Ductus ejaculatorius peptide 99B (DUP99B), a novel Drosophila melanogaster sex-peptide pheromone. Eur. J. Biochem. 269, 989–997 (2002)PubMedCrossRefGoogle Scholar
  58. 58.
    Aoki, K., Perlman, M., Lim, J.M., Cantu, R., Wells, L., Tiemeyer, M.: Dynamic developmental elaboration of N-linked glycan complexity in the Drosophila melanogaster embryo. J. Biol. Chem. 282, 9127–9142 (2007)PubMedCrossRefGoogle Scholar
  59. 59.
    North, S.J., Koles, K., Hembd, C., Morris, H.R., Dell, A., Panin, V.M., Haslam, S.M.: Glycomic studies of Drosophila melanogaster embryos. Glycoconj. J. 23, 345–354 (2006)PubMedCrossRefGoogle Scholar
  60. 60.
    Rendić, D., Linder, A., Paschinger, K., Borth, N., Wilson, I.B.H., Fabini, G.: Modulation of neural carbohydrate epitope expression in Drosophila melanogaster cells. J. Biol. Chem. 281, 3343–3353 (2006)PubMedCrossRefGoogle Scholar
  61. 61.
    Haslam, S.M., Coles, G.C., Munn, E.A., Smith, T.S., Smith, H.F., Morris, H.R., Dell, A.: Haemonchus contortus glycoproteins contain N-linked oligosaccharides with novel highly fucosylated core structures. J. Biol. Chem. 271, 30561–30570 (1996)PubMedCrossRefGoogle Scholar
  62. 62.
    Haslam, S.M., Coles, G.C., Reason, A.J., Morris, H.R., Dell, A.: The novel core fucosylation of Haemonchus contortus N-glycans is stage specific. Mol. Biochem. Parasitol. 93, 143–147 (1998)PubMedCrossRefGoogle Scholar
  63. 63.
    van Die, I., Gomord, V., Kooyman, F.N.J., van der Berg, T.K., Cummings, R.D., Vervelde, L.: Core α1→3-fucose is a common modification of N-glycans in parasitic helminths and constitutes an important epitope for IgE from Haemonchus contortus infected sheep. FEBS Lett. 463, 189–193 (1999)PubMedCrossRefGoogle Scholar
  64. 64.
    Haslam, S.M., Dell, A.: Hallmarks of Caenorhabditis elegans N-glycosylation: complexity and controversy. Biochimie 85, 25–32 (2003)PubMedCrossRefGoogle Scholar
  65. 65.
    Paschinger, K., Gutternigg, M., Rendić, D., Wilson, I.B.H.: The N-glycosylation of Caenorhabditis elegans. Carbohydr Res, 343, 2041–2049 (2008). doi: 10.1016/j.carres.2007.12.018 PubMedCrossRefGoogle Scholar
  66. 66.
    Pöltl, G., Kerner, D., Paschinger, K., Wilson, I.B.H.: N-Glycans of the porcine nematode parasite Ascaris suum are modified with phosphorylcholine and core fucose residues. FEBS J. 274, 714–726 (2007)PubMedCrossRefGoogle Scholar
  67. 67.
    Duffy, M.S., Morris, H.R., Dell, A., Appleton, J.A., Haslam, S.M.: Protein glycosylation in Parelaphostrongylus tenuis—First description of the Galα1–3Gal sequence in a nematode. Glycobiology 16, 854–862 (2006)PubMedCrossRefGoogle Scholar
  68. 68.
    Hanneman, A.J., Rosa, J.C., Ashline, D., Reinhold, V.: Isomer and glycomer complexities of core GlcNAcs in Caenorhabditis elegans. Glycobiology 16, 874–890 (2006)PubMedCrossRefGoogle Scholar
  69. 69.
    Gutternigg, M., Kretschmer-Lubich, D., Paschinger, K., Rendić, D., Hader, J., Geier, P., et al.: Biosynthesis of truncated N-linked oligosaccharides results from non-orthologous hexosaminidase-mediated mechanisms in nematodes, plants and insects. J Biol. Chem. 282(38), 27825–27840 (2007)PubMedCrossRefGoogle Scholar
  70. 70.
    Paschinger, K., Rendić, D., Lochnit, G., Jantsch, V., Wilson, I.B.H.: Molecular basis of anti-horseradish peroxidase staining in Caenorhabditis elegans. J. Biol. Chem. 279, 49588–49598 (2004)PubMedCrossRefGoogle Scholar
  71. 71.
    Paschinger, K., Staudacher, E., Stemmer, U., Fabini, G., Wilson, I.B.H.: Fucosyltransferase substrate specificity and the order of fucosylation in invertebrates. Glycobiology 15, 463–474 (2005)PubMedCrossRefGoogle Scholar
  72. 72.
    Tawill, S., Le Goff, L., Ali, F., Blaxter, M., Allen, J.E.: Both free-living and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infect. Immun. 72, 398–407 (2004)PubMedCrossRefGoogle Scholar
  73. 73.
    Shi, H., Tan, J., Schachter, H.: N-glycans are involved in the response of Caenorhabditis elegans to bacterial pathogens. Methods Enzymol. 417, 359–389 (2006)PubMedCrossRefGoogle Scholar
  74. 74.
    Takahashi, N., Masuda, K., Hiraki, K., Yoshihara, K., Huang, H.-H., Khoo, K.-H., Kato, K.: N-glycan structures of squid rhodopsin. Existence of the α1–3 and α1–6 difucosylated innermost GlcNAc residue in a molluscan glycoprotein. Eur. J. Biochem. 270, 2627–2632 (2004)CrossRefGoogle Scholar
  75. 75.
    Gutternigg, M., Ahrer, K., Grabher-Meier, H., Burgmayr, S., Staudacher, E.: Neutral N-glycans of the gastropod Arion lusitanicus. Eur. J. Biochem. 271, 1348–1356 (2004)PubMedCrossRefGoogle Scholar
  76. 76.
    Gutternigg, M., Bürgmayr, S., Pöltl, G., Rudolf, J., Staudacher, E.: Neutral N-glycan patterns of the gastropods Limax maximus, Cepaea hortensis, Planorbarius corneus, Arianta arbustorum and Achatina fulica. Glycoconj. J. 24, 475–489 (2007)PubMedCrossRefGoogle Scholar
  77. 77.
    Geyer, H., Wuhrer, M., Resemann, A., Geyer, R.: Identification and characterization of keyhole limpet hemocyanin N-glycans mediating cross-reactivity with Schistosoma mansoni. J. Biol. Chem. 280, 40731–40748 (2005)PubMedCrossRefGoogle Scholar
  78. 78.
    Lehr, T., Geyer, H., Maass, K., Doenhoff, M.J., Geyer, R.: Structural characterization of N-glycans from the freshwater snail Biomphalaria glabrata cross-reacting with Schistosoma mansoni glycoconjugates. Glycobiology 17, 82–103 (2007)PubMedCrossRefGoogle Scholar
  79. 79.
    Faveeuw, C., Mallevaey, T., Paschinger, K., Wilson, I.B.H., Fontaine, J., Mollicone, R., Oriol, R., Altmann, F., Lerouge, P., Capron, M., Trottein, F.: Schistosome N-glycans containing core α3-fucose and core β2-xylose epitopes are strong inducers of Th2 responses in mice. Eur. J. Immunol. 33, 1271–1281 (2003)PubMedCrossRefGoogle Scholar
  80. 80.
    Amatayakul-Chantler, S., Ferguson, M.A.J., Dwek, R.A., Rademacher, T.W., Parekh, R.B., Crandall, I.E., Newell, P.C.: Cell surface oligosaccharides on Dictyostelium during development. J. Cell Sci. 99, 485–495 (1991)Google Scholar
  81. 81.
    Schiller, B., Voglmeir, J., Geyer, R., Pöltl, G., Karl, S., Wilson, I.B.H.: The N-glycosylation potential of Dictyostelium discoideum. FEBS J. 274(Suppl 1), 375 (2007) (Abstract F1–192)Google Scholar
  82. 82.
    Kang, J.S., Frank, J., Kang, C.H., Kajiura, H., Vikram, M., Ueda, A., Kim, S., Bahk, J.D., Triplett, B., Fujiyama, K., Lee, S.Y., von Schaewen, A., Koiwa, H.: Salt tolerance of Arabidopsis thaliana requires maturation of N-glycosylated proteins in the Golgi apparatus. Proc. Natl. Acad. Sci. U.S.A. 105, 5933–5938 (2008)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Katharina Paschinger
    • 1
  • Dubravko Rendić
    • 1
  • Iain B. H. Wilson
    • 1
  1. 1.Department für ChemieUniversität für BodenkulturWienAustria

Personalised recommendations