Glycoconjugate Journal

, Volume 26, Issue 3, pp 359–366

Glycosylation at the fetomaternal interface: does the glycocode play a critical role in implantation?



During pregnancy, the heavily glycosylated surfaces of the implanting blastocyst and maternal uterine epithelium interact in a highly controlled and specific manner. Examination of this interface in species that show interdigitation of embryonic and maternal surfaces (epitheliochorial placentation) shows that each has its own particular pattern of glycosylation or glycotype, and that closely related and/or interbreeding species e.g. horse and donkey or llama and guanaco, have very similar glycotypes. Implantation of interspecies hybrids is facilitated, when the blastocyst has an outer cell layer bearing glycans that are compatible with the maternal host. We refer to this mutual compatibility as a glycocode. The probability that hybrid embryo glycotypes differ from those normally associated with the host species may account for the high pregnancy failure rates seen in interspecies breeding. We suggest the maternal host selects between genotypically distinct embryos, and this selection depends partly on cell surface glycosylation. We infer that the glycocode plays a critical role in implantation, for if the survival of modified genotypes results in fitter offspring with altered placental glycosylation, selection pressure downstream may in turn act to drive adaptations in the maternal surface glycotype to produce a complementary glycocode, thus leading eventually to the creation of new species. We speculate that glycan microheterogeneity plays a specific role in this process.


Placenta Fetomaternal interface Evolution Speciation Glycotype 


  1. 1.
    Aplin, J.D., Kimber, S.J.: Trophoblast-uterine interactions at implantation. Reprod. Biol. Endocrinol. 2, 48 (2004)PubMedCrossRefGoogle Scholar
  2. 2.
    Carson, D.D.: The glycobiology of implantation. Front. Biosci. 7, 1535–1544 (2002)CrossRefGoogle Scholar
  3. 3.
    Dutt, A., Tang, J.P., Carson, D.D.: Lactosaminoglycans are involved in uterine epithelial cell adhesion in vitro. Dev. Biol. 119, 27–37 (1987)PubMedCrossRefGoogle Scholar
  4. 4.
    Jones, C.J.P., Aplin, J.D.: Glycans as attachment and signalling molecules at the fetomaternal interface. In: Paulesu, L. (ed.) Signal Molecules in Animal and Human Gestation, pp. 65–85. Research Signpost, Kerala, India (2004)Google Scholar
  5. 5.
    Surani, M.A.H., Fishel, S.B.: Blastocyst-uterine interactions at implantation. Prog. Reprod. Biol. 7, 14–27 (1980)Google Scholar
  6. 6.
    Hancock, J.L., McGovern, P.T.: Placentae of goat–sheep hybrids. J. Anat. 106, 413 (1970)Google Scholar
  7. 7.
    Fehilly, C.B., Willadsen, S.M., Tucker, E.M.: Interspecific chimaerism between sheep and goat. Nature (Lond). 307, 634–636 (1984)CrossRefGoogle Scholar
  8. 8.
    Meinecke-Tillmann, S., Meinecke, B.: Experimental chimaeras—removal of reproductive barrier between sheep and goats. Nature (Lond). 307, 637–638 (1984)CrossRefGoogle Scholar
  9. 9.
    Rossant, J., Croy, B.A., Clark, D.A., Chapman, V.M.: Interspecific hybrids and chimeras in mice. J. Exp. Zool. 228, 223–233 (1983)PubMedCrossRefGoogle Scholar
  10. 10.
    Rossant, J., Frels, W.I.: Interspecific chimeras in mammals: successful production of live chimeras between Mus musculus and Mus caroli. Science 208, 419–421 (1980)PubMedCrossRefGoogle Scholar
  11. 11.
    Rossant, J., Mauro, V.M., Croy, B.A.: Importance of trophoblast genotype for survival of interspecific murine chimeras. J. Embryol. Exp. Morph. 69, 141–149 (1982)PubMedGoogle Scholar
  12. 12.
    McGovern, P.T.: The effect of maternal immunity on the survival of goat x sheep hybrid embryos. J. Reprod. Fertil. 34, 215–220 (1973)PubMedGoogle Scholar
  13. 13.
    Allen, W.R.: Immunological aspects of the endometrial cup reaction and the effect of xenogeneic pregnancy in horses and donkeys. J. Reprod. Fertil. 31(Suppl), 57–94 (1982)Google Scholar
  14. 14.
    Allen, W.R., Skidmore, J.A., Stewart, F., Antczak, D.F.: Effects of fetal genotype and uterine environment on placental development in equids. J. Reprod. Fertil. 97, 55–60 (1993)Google Scholar
  15. 15.
    Wooding, F.B.P., Flint, A.P.F.: Placentation. In: Lamming, G.E. (ed.) Marshall’s Physiology of Reproduction, Pregnancy and Lactation, vol. 3, pp. 233–460. Chapman and Hall, London (1994)Google Scholar
  16. 16.
    Jones, C.J.P., Dantzer, V., Leiser, R., Krebs, C., Stoddart, R.W.: Localisation of glycans in the placenta: a comparative study of epitheliochorial, endotheliochorial and haemomonochorial placentation. Microsc. Res. Tech. 38, 110–114 (1997)CrossRefGoogle Scholar
  17. 17.
    Jones, C.J.P., Wooding, F.B.P., Abd-Elnaeimm, M.M., Leiser, R., Dantzer, V., Stoddart, R.W.: Glycosylation in the near-term epitheliochorial placenta of the horse, donkey and camel: a comparative study of interbreeding and non-interbreeding species. J. Reprod. Fertil. 118, 397–405 (2000)PubMedCrossRefGoogle Scholar
  18. 18.
    Stanley, H.F., Kadwell, M., Wheeler, J.C.: Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proc. Roy. Soc. Lond. B 256, 1–6 (1994)CrossRefGoogle Scholar
  19. 19.
    Jones, C.J.P., Abd-Elnaeim, M., Bevilacqua, E., Oliveira, L.V., Leiser, R.: Comparison of uteroplacental glycosylation in the camel (Camelus dromedarius) and alpaca (Lama pacos). Reproduction. 123, 115–126 (2002)PubMedCrossRefGoogle Scholar
  20. 20.
    Skidmore, J.A., Billah, M., Binns, M., Short, R.V., Allen, W.R.: Hybridizing old and new world camelids: Camelus dromedarius X Lama guanicoe. Proc. Roy. Soc. Lond. B 266, 649–656 (1999)CrossRefGoogle Scholar
  21. 21.
    Kadwell, M., Fernandez, M., Stanley, H.F., Baldi, R., Wheeler, J.C., Rosadio, R., Bruford, M.W.: Genetic analysis reveals the wild ancestors of the llama and the alpaca. Proc. Roy. Soc. Lond. B 268, 2575–2584 (2001)CrossRefGoogle Scholar
  22. 22.
    Wheeler, J.C., Chikhi, L.M., Bruford, W.: Genetic analysis of the origin of domestic south american camelids. In: Zeder, M., Decker-Walters, D., Bradley, D., Smith, B.D. (eds.), Documenting Domestication: New Genetic and Archaeological Paradigms, pp. 329–341. California University Press, Berkeley (2006)Google Scholar
  23. 23.
    Theimer, T.C., Keim, P.: Phylogenetic relationships of peccaries based on mitochondrial cytochrome b DNA sequence. J. Mammol. 79, 566–572 (1998)CrossRefGoogle Scholar
  24. 24.
    Jones, C.J.P., Santos, T.C., Abd-Elnaeim, M., Dantzer, V., Miglino, M.A.: Placental glycosylation in peccary species and its relation to that of swine and dromedary. Placenta 25, 649–657 (2004)PubMedCrossRefGoogle Scholar
  25. 25.
    Gagneux, P., Varki, A.: Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999)PubMedCrossRefGoogle Scholar
  26. 26.
    Varki, A.: Nothing in Glycobiology makes sense, except in the light of evolution. Cell 126, 841–845 (2006)PubMedCrossRefGoogle Scholar
  27. 27.
    Becker, D.J., Lowe, J.B.: Fucose: biosynthesis and biological function in mammals. Glycobiology 13, 41R–53R (2003)PubMedCrossRefGoogle Scholar
  28. 28.
    Staudacher, E., Altmann, F., Wilson, I.B.H., März, L.: Fucose in N-glycans: from plant to man. Biochim. Biophys. Acta 1473, 216–236 (1999)PubMedGoogle Scholar
  29. 29.
    Martinez-Duncker, I., Mollicone, R., Candelier, J.J., Breton, C., Oriol, R.: A new superfamily of protein-O-fucosyltransferases, alpha2-fucosyltransferases: and alpha6-fucosyltransferases, phylogeny and identification of conserved peptide motifs. Glycobiology 13, 1C–5C (2003)PubMedCrossRefGoogle Scholar
  30. 30.
    Bry, L., Falk, P.G., Midtvedt, T., Gordon, J.I.: A model of host-microbial interactions in an open mammalian ecosystem. Science 273, 1380–1383 (1996)PubMedCrossRefGoogle Scholar
  31. 31.
    Fouladi-Nashta, A.A., Jones, C.J.P., Nijjar, N., Mohamet, L., Smith, A., Kimber, S.J.: Characterisation of the uterine phenotype during the peri-implantation period for LIF null, MFI strain mice. Dev. Biol. 281, 1–21 (2005)PubMedCrossRefGoogle Scholar
  32. 32.
    Jones, C.J.P., Aplin, J.D., Mulholland, J., Glasser, S.R.: Patterns of sialylation in differentiating rat decidual cells as revealed by lectin histochemistry. J. Reprod. Fertil. 99, 635–645 (1993)PubMedCrossRefGoogle Scholar
  33. 33.
    Jones, C.J.P., Kimber, S.J., Illingworth, I., Aplin, J.D.: Decidual sialylation shows species-specific differences in the pregnant mouse and rat. J. Reprod. Fertil. 106, 241–250 (1996)PubMedGoogle Scholar
  34. 34.
    Kim, Y.J., Varki, A.: Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J. 14, 569–576 (1997)PubMedCrossRefGoogle Scholar
  35. 35.
    Le Marer, N., Laudet, V., Svensson, E.C., Cazlaris, H., Van Hille, B., Lagrou, C., Stehelin, D., Montreuil, J., Verbert, A., Delannoy, P.: The c-Ha-ras oncogene induces increased expression of ß-galactoside a2,6-sialyltransferase in rat fibroblast (FR3T3) cells. Glycobiology 2, 49–56 (1992)PubMedCrossRefGoogle Scholar
  36. 36.
    Sata, T., Roth, J., Zuber, C., Stamm, B., Heitz, P.U.: Expression of a2,6-linked sialic acid residues in neoplastic but not in normal human colonic mucosa. A lectin-gold cytochemical study with Sambucus nigra and Maackia amurensis lectins. Am. J. Pathol. 139, 1435–1448 (1991)PubMedGoogle Scholar
  37. 37.
    Dimitroff, C.J., Pera, P., Dall’Olio, F., Matta, K.L., Chandrasekaran, E.V., Lau, J.T.Y., Bernacki, R.J.: Cell surface N-Acetylneuraminic acid a2,3-galactoside-dependent intercellular adhesion of human colon cancer cells. Biochem. Biophys. Res. Comm. 256, 631–636 (1999)PubMedCrossRefGoogle Scholar
  38. 38.
    Bucior, I., Burger, M.M.: Carbohydrate-carbohydrate interaction as a major force initiating cell-cell recognition. Glycoconj. J. 21, 111–123 (2004)PubMedCrossRefGoogle Scholar
  39. 39.
    Hakomori, S.: Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconj. J. 21, 125–137 (2004)PubMedCrossRefGoogle Scholar
  40. 40.
    Eggens, I., Fenderson, B., Toyokuni, T., Dean, B., Stroud, M., Hakomori, S.: Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells, J. Biol. Chem. 264, 9476–9484 (1989)Google Scholar
  41. 41.
    Kojima, N., Fenderson, B.A., Stroud, M.R., Goldberg, R.I., Habermann, R., Toyokuni, T., Hakomori, S.: Further studies on cell adhesion based on Le(x)-Le(x) interaction, with new approaches: embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Le(x) expression. Glycoconj. J. 11, 238–248 (1994)PubMedCrossRefGoogle Scholar
  42. 42.
    Perez, S., Mouhous-Riou, N., Nifant’ev, N.E., Tsvelkov, Y.E., Bachet, B., Imberty, A.: Crystal and molecular structure of a histo-blood group antigen involved in cell adhesion: the Lewisx trisaccharide. Glycobiology 6, 537–542 (1996)PubMedCrossRefGoogle Scholar
  43. 43.
    Liljander, M., Arvola, M., Mattsson, R.: Placental immune defences—protection against rejection and infection. Encyclopedia of Life Sciences, John Wiley and Sons Ltd. (2007)
  44. 44.
    Uckan, D., Steele, A., Cherry, S.H., Wang, B.-Y., Chamizo, W., Koutsonikolis, A., Gilbert-Barness, E., Good, R.A.: Trophoblasts express Fas ligand: a proposed mechanism for immune privilege in placenta and maternal invasion. Mol. Hum. Reprod. 3, 655–662 (1997)PubMedCrossRefGoogle Scholar
  45. 45.
    Schneider, P., Bodmer, J.-L., Holler, N., Mattmann, C., Scuderi, P., Terskikh, A., Peitsch, M.C., Tschopp, J.: Characterization of Fas (Apo-1, CD95)-Fas Ligand interaction. J. Biol. Chem. 272, 18827–18833 (1997)PubMedCrossRefGoogle Scholar
  46. 46.
    Patel, N., Brinkman-Van der Linden, E.C., Altmann, S.W., Gish, K., Balasubramanian, S., Timans, J.C., Peterson, D., Bell, M.P., Bazan, J.F., Varki, A., Kastelein, R.A.: OB-BP1/Siglec-6. a leptin- and sialic acid-binding protein of the immunoglobulin superfamily. J. Biol. Chem. 274, 22729–22738 (1999)PubMedCrossRefGoogle Scholar
  47. 47.
    Jones, C.J.P., Carter, A.M., Enders, A.C.: Glycosylation at the fetomaternal interface in haemomonochorial placentae from five widely separated species of mammal: is there evidence for convergent evolution? Cells Tissues Organs 185, 269–284 (2007)PubMedCrossRefGoogle Scholar
  48. 48.
    Eisenberg, J.F., Gould, E.: The tenrecs: a study in mammalian behavior and evolution. Smithson. Contrib. Zool. 27, 1–138 (1970)Google Scholar
  49. 49.
    Bainbridge, D.R.J.: Evolution of mammalian pregnancy in the presence of the maternal immune system. Rev. Reprod. 5, 67–74 (2000)PubMedCrossRefGoogle Scholar
  50. 50.
    McMaster, M., Zhou, Y., Shorter, S., Kapasi, K., Geraghty, D., Lim, K.-H., Fisher, S.: HLA-G isoforms produced by placental cytotrophoblasts and found in amniotic fluid are due to unusual glycosylation. J. Immunol. 160, 5922–5928 (1998)PubMedGoogle Scholar
  51. 51.
    Prakobphol, A., Genbacev, O., Gormley, M., Kapidzic, M., Fisher, S.J.: A role for the L-selectin adhesion system in mediating cytotrophoblast emigration from the placenta. Dev. Biol. 298, 107–117 (2006)PubMedCrossRefGoogle Scholar
  52. 52.
    Bulmer, J.N., Johnson, P.M.: Antigen expression by trophoblast populations in the human placenta and their possible immunobiological relevance. Placenta 6, 127–140 (1985)PubMedCrossRefGoogle Scholar
  53. 53.
    Croy, B.A., Wood, W., King, G.J.: Evaluation of intrauterine immune suppression during pregnancy in a species with epitheliochorial placentation. J. Immunol. 139, 1088–1095 (1987)PubMedGoogle Scholar
  54. 54.
    Moffett, A., Loke, C.: Immunology of placentation in eutherian mammals. Nat. Rev. Immunol. 6, 584–594 (2006)PubMedCrossRefGoogle Scholar
  55. 55.
    Higai, K., Ichikawa, A., Matsumoto, K.: Binding of sialyl LewisX antigen to lectin-like receptors on NK cells induces cytotoxicity and tyrosine phosphorylation of a 17-kDa protein. Biochim. Biophys. Acta 1760, 1355–1363 (2006)PubMedGoogle Scholar
  56. 56.
    Baba, E., Erskine, R., Boyson, J.E., Cohen, G.B., Davis, D.M., Malik, P., Mandelboim, O., Reyburn, H.T., Strominger, J.L.: N-linked carbohydrate on human leukocyte antigen-C and recognition by natural killer cell inhibitory receptors. Hum. Immunol. 61, 1202–1218 (2000)PubMedCrossRefGoogle Scholar
  57. 57.
    Blois, S.M., Ilarregui, J.M., Tometten, M., Garcia, M., Orsal, A.S., Cordo-Russo, R., Toscano, M.A., Bianco, G.A., Kobelt, P., Handjiski, B., Tirado, I., Markert, U.R., Klapp, B.F., Poirier, F., Szekeres-Bartho, J., Rabinovich, G.A., Arck, P.C.: A pivotal role for galectin-1 in fetomaternal tolerance. Nat. Med. 13, 1450–1457 (2007)PubMedCrossRefGoogle Scholar
  58. 58.
    Asano, M., Furukawa, K., Kido, M., Matsumoto, S., Umesaki, Y., Kochibe, N., Yoichiro Iwakura, Y.: Growth retardation and early death of b-1, 4-galactosyltransferase knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J. 16, 1850–1857 (1997)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Maternal and Fetal Health Research Group, School of Clinical and Laboratory SciencesUniversity of ManchesterManchesterUK

Personalised recommendations