Glycoconjugate Journal

, 25:763 | Cite as

Glycan structures of ocular surface mucins in man, rabbit and dog display species differences

  • Louise Royle
  • Elizabeth Matthews
  • Anthony Corfield
  • Monica Berry
  • Pauline M. Rudd
  • Raymond A. Dwek
  • Stephen D. Carrington


The composition of the mucus gel of the tear film reflects the competing needs for transparency, stability, hydration, and protection of the ocular surface. Mucins form the macromolecular scaffolding of this hydrated gel, and glycans decorating these glycoproteins represent a rich source of binding ligands that may both modulate microbial binding and regulate the physicochemical characteristics of the gel. This study compares the structure of O-linked glycans derived from the ocular mucins of three species, to determine whether the ocular surface microenvironment dictates the need for a common pattern of O-linked carbohydrate structures. Ocular mucus aspirates were collected from healthy humans, rabbits and dogs. Mucins were purified using standard protocols. O-glycans were released by hydrazinoloysis and subsequently analysed by a combination of HPLC, exoglycosidase digestions and LC–MS/MS. A total of 12 different O-glycans were identified. In human ocular mucin, the majority were negatively charged and terminated in sialic acid, whilst those from rabbit or dog were mainly neutral and terminated in α 1-2 fucose and/or α 1-3 N-acetylgalactosamine. The glycans were short: the most common structures being tetra-, tri- or disaccharides. Less elaborate glycan structures are encountered at the ocular surface than at many other mucosal surfaces. Species-specific glycan expression is a feature of ocular surface mucins, and has implications for their defensive properties where different microbial and environmental challenges are encountered.


Ocular Mucin Glycans Comparative study 


  1. 1.
    Corfield, A., Carrington, S., Hicks, S., Berry, M., Ellingham, R.: Ocular mucins: purification, metabolism and functions. Prog. Retin. Eye Res. 16, 627–656 (1997)CrossRefGoogle Scholar
  2. 2.
    Gipson, I.K., Hori, Y., Argüeso, P.: Character of ocular surface mucins and their alteration in dry eye disease. Ocul. Surf. 2, 131–148 (2004)PubMedGoogle Scholar
  3. 3.
    Berry, M., Brayshaw, D., McMaster, T.J.: Dynamic molecular resolution imaging of preocular fluid impressions. Br. J. Ophthalmol. 88, 1460–1466 (2004)PubMedCrossRefGoogle Scholar
  4. 4.
    Fleiszig, S.M., McNamara, N.A., Evans, D.J.: The tear film and defense against infection. Adv. Exp. Med. Biol. 506, 523–530 (2002)PubMedGoogle Scholar
  5. 5.
    Hang, H.C., Bertozzi, C.R.: The chemistry and biology of mucin-type O-linked glycosylation. Bioorg. Med. Chem. 13, 5021–5034 (2005)PubMedCrossRefGoogle Scholar
  6. 6.
    Paulsen, F.P., Berry, M.S.: Mucins and TFF peptides of the tear film and lacrimal apparatus. Prog. Histochem. Cytochem. 41, 1–53 (2006)PubMedCrossRefGoogle Scholar
  7. 7.
    Gipson, I.K.: Distribution of mucins at the ocular surface. Exp. Eye Res. 78, 379–388 (2004)PubMedCrossRefGoogle Scholar
  8. 8.
    Gipson, I.K., Inatomi, T.: Cellular origin of mucins of the ocular surface tear film. Adv. Exp. Med. Biol. 438, 221–227 (1998)PubMedGoogle Scholar
  9. 9.
    Corfield, A.P., Carroll, D., Myerscough, N., Probert, C.S.: Mucins in the gastrointestinal tract in health and disease. Front. Biosci. 6, D1321–D1357 (2001)PubMedCrossRefGoogle Scholar
  10. 10.
    Rose, M.C., Voynow, J.A.: Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol. Rev. 86, 245–278 (2006)PubMedCrossRefGoogle Scholar
  11. 11.
    Lamblin, G., Aubert, J.P., Perini, J.M., et al.: Human respiratory mucins. Eur. Respir. J. 5, 247–256 (1992)PubMedGoogle Scholar
  12. 12.
    Hollingsworth, M.A., Swanson, B.J.: Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004)PubMedCrossRefGoogle Scholar
  13. 13.
    Bell, S.L., Xu, G., Khatri, I.A., Wang, R., Rahman, S., Forstner, J.F.: N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem. J. 373, 893–900 (2003)PubMedCrossRefGoogle Scholar
  14. 14.
    Gipson, I.K., Argueso, P.: Role of mucins in the function of the corneal and conjunctival epithelia. Int. Rev. Cytol. 231, 1–49 (2003)PubMedCrossRefGoogle Scholar
  15. 15.
    Hanisch, F.G.: O-glycosylation of the mucin type. Biol. Chem. 382, 143–149 (2001)PubMedCrossRefGoogle Scholar
  16. 16.
    Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993)PubMedCrossRefGoogle Scholar
  17. 17.
    Gagneux, P., Varki, A.: Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9, 747–755 (1999)PubMedCrossRefGoogle Scholar
  18. 18.
    Dennis, J.W., Granovsky, M., Warren, C.E.: Protein glycosylation in development and disease. Bioessays 21, 412–421 (1999)PubMedCrossRefGoogle Scholar
  19. 19.
    Drickamer, K., Taylor, M.E.: Evolving views of protein glycosylation. Trends Biochem. Sci. 23, 321–324 (1998)PubMedCrossRefGoogle Scholar
  20. 20.
    Hazlett, L., Rudner, X., Masinick, S., Ireland, M., Gupta, S.: In the immature mouse, Pseudomonas aeruginosa pili bind a 57-kd (alpha 2-6) sialylated corneal epithelial cell surface protein: a first step in infection. Invest. Ophthalmol. Vis. Sci. 36, 634–643 (1995)PubMedGoogle Scholar
  21. 21.
    Rudner, X.L., Zheng, Z., Berk, R.S., Irvin, R.T., Hazlett, L.D.: Corneal epithelial glycoproteins exhibit Pseudomonas aeruginosa pilus binding activity. Invest. Ophthalmol. Vis. Sci. 33, 2185–2193 (1992)PubMedGoogle Scholar
  22. 22.
    Fleiszig, S.M., Zaidi, T.S., Pier, G.B.: Mucus and Pseudomonas aeruginosa adherence to the cornea. Adv. Exp. Med. Biol. 350, 359–362 (1994)PubMedGoogle Scholar
  23. 23.
    Chen, C.P., Song, S.C., Gilboa-Garber, N., Chang, K.S., Wu, A.M.: Studies on the binding site of the galactose-specific agglutinin PA-IL from Pseudomonas aeruginosa. Glycobiology 8, 7–16 (1998)PubMedCrossRefGoogle Scholar
  24. 24.
    Gilboa-Garber, N.: Pseudomonas aeruginosa lectins as a model for lectin production, properties, applications and functions. Zentralbl. Bakteriol. Mikrobiol. Hyg. [A] 270, 3–15 (1988)Google Scholar
  25. 25.
    Wenneras, C., Neeser, J.R., Svennerholm, A.M.: Binding of the fibrillar CS3 adhesin of enterotoxigenic Escherichia coli to rabbit intestinal glycoproteins is competitively prevented by GalNAc beta 1-4Gal-containing glycoconjugates. Infect. Immun. 63, 640–646 (1995)PubMedGoogle Scholar
  26. 26.
    Stins, M.F., Prasadarao, N.V., Ibric, L., Wass, C.A., Luckett, P., Kim, K.S.: Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am. J. Pathol. 145, 1228–1236 (1994)PubMedGoogle Scholar
  27. 27.
    Sharon, N., Lis, H.: Microbial lectins and their receptors. In: Montreuil, J., Vliegenthart, J.F.G., Schachter, H. (eds.) Glycoproteins II, pp. 475–506. Elsevier, Amsterdam (1997)CrossRefGoogle Scholar
  28. 28.
    Carrington, S.D., Hicks, S.J., Corfield, A.P., et al.: Structural analysis of secreted ocular mucins in canine dry eye. Adv. Exp. Med. Biol. 438, 253–263 (1998)PubMedGoogle Scholar
  29. 29.
    Berry, M., Ellingham, R.B., Corfield, A.P.: Polydispersity of normal human conjunctival mucins. Invest. Ophthalmol. Vis. Sci. 37, 2559–2571 (1996)PubMedGoogle Scholar
  30. 30.
    Argueso, P., Herreras, J.M., Calonge, M., Citores, L., Pastor, J.C., Girbes, T.: Analysis of human ocular mucus: effects of neuraminidase and chitinase enzymes. Cornea 17, 200–207 (1998)PubMedGoogle Scholar
  31. 31.
    Chao, C.C., Butala, S.M., Herp, A.: Studies on the isolation and composition of human ocular mucin. Exp. Eye Res. 47, 185–196 (1988)PubMedCrossRefGoogle Scholar
  32. 32.
    Hicks, S.J., Carrington, S.D., Kaswan, R.L., Adam, S., Bara, J., Corfield, A.P.: Demonstration of discrete secreted and membrane-bound ocular mucins in the dog. Exp. Eye Res. 64, 597–607 (1997)PubMedCrossRefGoogle Scholar
  33. 33.
    Ellingham, R.B., Berry, M., Stevenson, D., Corfield, A.P.: Secreted human conjunctival mucus contains MUC5AC glycoforms. Glycobiology 9, 1181–1189 (1999)PubMedCrossRefGoogle Scholar
  34. 34.
    Royle, L., Mattu, T.S., Hart, E., et al.: An analytical and structural database provides a strategy for sequencing O-glycans from microgram quantities of glycoproteins. Anal. Biochem. 304, 70–90 (2002)PubMedCrossRefGoogle Scholar
  35. 35.
    Patel, T., Bruce, J., Merry, A., et al.: Use of hydrazine to release in intact and unreduced form both N- and O-linked oligosaccharides from glycoproteins. Biochemistry 32, 679–693 (1993)PubMedCrossRefGoogle Scholar
  36. 36.
    Merry, A.H., Neville, D.C., Royle, L., et al.: Recovery of intact 2-aminobenzamide-labeled O-glycans released from glycoproteins by hydrazinolysis. Anal. Biochem. 304, 91–99 (2002)PubMedCrossRefGoogle Scholar
  37. 37.
    Garcher, C., Bara, J., Bron, A., Oriol, R.: Expression of mucin peptide and blood group ABH- and Lewis-related carbohydrate antigens in normal human conjunctiva. Invest. Ophthalmol. Vis. Sci. 35, 1184–1191 (1994)PubMedGoogle Scholar
  38. 38.
    Berry, M., Corfield, A.P., Harris, A., Khan-Lim, D.: Functional processing of ocular mucins. Adv. Exp. Med. Biol. 506, 283–288 (2002)PubMedGoogle Scholar
  39. 39.
    Aknin, M.-L.R., Berry, M., Dick, A., Khan-Lim, D.: Normal but not altered mucins activate neutrophils. Cell Tissue Res. 318, 545–551 (2004)PubMedCrossRefGoogle Scholar
  40. 40.
    Varki, A., Angata, T.: Siglecs—the major subfamily of I-type lectins. Glycobiology 16, 1R–27R (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    Sperandio, M.: Selectins and glycosyltransferases in leukocyte rolling in vivo. FEBS J. 273, 4377–4389 (2006)PubMedCrossRefGoogle Scholar
  42. 42.
    Varki, A.: Sialic acids as ligands in recognition phenomena. FASEB J. 11, 248–255 (1997)PubMedGoogle Scholar
  43. 43.
    Hirmo, S., Kelm, S., Schauer, R., Nilsson, B., Wadstrom, T.: Adhesion of Helicobacter pylori strains to alpha-2,3-linked sialic acids. Glycoconj. J. 13, 1005–1011 (1996)PubMedCrossRefGoogle Scholar
  44. 44.
    Angata, T., Varki, A.: Chemical diversity in the sialic acids and related alpha-keto acids: an evolutionary perspective. Chem. Rev. 102, 439–469 (2002)PubMedCrossRefGoogle Scholar
  45. 45.
    Kelm, S., Schauer, R.: Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175, 137–240 (1997)PubMedCrossRefGoogle Scholar
  46. 46.
    Hooper, L.V., Gordon, J.I.: Glycans as legislators of host–microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11, 1R–10R (2001)PubMedCrossRefGoogle Scholar
  47. 47.
    Gagneux, P., Cheriyan, M., Hurtado-Ziola, N., et al.: Human-specific regulation of alpha 2-6-linked sialic acids. J. Biol. Chem. 278, 48245–48250 (2003)PubMedCrossRefGoogle Scholar
  48. 48.
    Alexander, D.A., Dimock, K.: Sialic acid functions in enterovirus 70 binding and infection. J. Virol. 76, 11265–11272 (2002)PubMedCrossRefGoogle Scholar
  49. 49.
    Olofsson, S., Kumlin, U., Dimock, K., Arnberg, N.: Avian influenza and sialic acid receptors: more than meets the eye? Lancet Infect. Dis. 5, 184–188 (2005)PubMedGoogle Scholar
  50. 50.
    Wu, E., Fernandez, J., Fleck, S.K., Von Seggern, D.J., Huang, S., Nemerow, G.R.: A 50-kDa membrane protein mediates sialic acid-independent binding and infection of conjunctival cells by adenovirus type 37. Virology 279, 78–89 (2001)PubMedCrossRefGoogle Scholar
  51. 51.
    Aristoteli, L.P., Willcox, M.D.: The adhesion of Pseudomonas aeruginosa to high molecular weight human tear film species corresponds to glycoproteins reactive with Sambucus nigra lectin. Exp. Eye Res. 83, 1146–1153 (2006)PubMedCrossRefGoogle Scholar
  52. 52.
    Sack, R.A., Beaton, A., Sathe, S., Morris, C., Willcox, M., Bogart, B.: Towards a closed eye model of the pre-ocular tear layer. Prog. Retin. Eye Res. 19, 649–668 (2000)PubMedCrossRefGoogle Scholar
  53. 53.
    Sack, R.A., Nunes, I., Beaton, A., Morris, C.: Host-defense mechanism of the ocular surfaces. Biosci. Rep. 21, 463–480 (2001)PubMedCrossRefGoogle Scholar
  54. 54.
    Sack, R.A., Bogart, B.I., Beaton, A., Sathe, S., Lew, G.: Diurnal variations in tear glycoproteins: evidence for an epithelial origin for the major non-reducible > or =450 kDa sialoglycoprotein(s). Curr. Eye Res. 16, 577–588 (1997)PubMedCrossRefGoogle Scholar
  55. 55.
    Jass, J.R., Smith, M.: Sialic acid and epithelial differentiation in colorectal polyps and cancer—a morphological, mucin and lectin histochemical study. Pathology 24, 233–242 (1992)PubMedCrossRefGoogle Scholar
  56. 56.
    Corfield, A.P., Wagner, S.A., Clamp, J.R., Kriaris, M.S., Hoskins, L.C.: Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun. 60, 3971–3978 (1992)PubMedGoogle Scholar
  57. 57.
    Corfield, A.P., Donapaty, S.R., Carrington, S.D., Hicks, S.J., Schauer, R., Kohla, G.: Identification of 9-O-acetyl-N-acetylneuraminic acid in normal canine pre-ocular tear film secreted mucins and its depletion in Keratoconjunctivitis sicca. Glycoconj. J. 22, 409–416 (2005)PubMedCrossRefGoogle Scholar
  58. 58.
    Argueso, P., Sumiyoshi, M.: Characterization of a carbohydrate epitope defined by the monoclonal antibody H185: sialic acid O-acetylation on epithelial cell-surface mucins. Glycobiology 16, 1219–1228 (2006)PubMedCrossRefGoogle Scholar
  59. 59.
    Prado, M.R., Rocha, M.F., Brito, E.H., et al.: Survey of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Fortaleza, Ceara, Brazil. Vet. Ophthalmol. 8, 33–37 (2005)PubMedCrossRefGoogle Scholar
  60. 60.
    Cooper, S.C., McLellan, G.J., Rycroft, A.N.: Conjunctival flora observed in 70 healthy domestic rabbits (Oryctolagus cuniculus). Vet. Rec. 149, 232–235 (2001)PubMedGoogle Scholar
  61. 61.
    McDonald, P., Watson, A.: Microbial flora of normal canine conjunctivae. J. Small Anim. Pract. 17, 809–812 (1976)PubMedCrossRefGoogle Scholar
  62. 62.
    Urban, M., Wyman, M., Rheins, M., Marraro, R.: Conjunctival flora of clinically normal dogs. J. Am. Vet. Med. Assoc. 161, 201–207 (1972)PubMedGoogle Scholar
  63. 63.
    Deeb, B.J., DiGiacomo, R.F.: Respiratory diseases of rabbits. Vet. Clin. North Am. Exot. Anim. Pract. 3, 465–480 (2000), vi–viiPubMedGoogle Scholar
  64. 64.
    Loliger, H.C., Matthes, S.: Infectious factor diseases in domestic small animals (carnivorous and herbivorous fur animals, wool and meat rabbits. Berl. Munch. Tierarztl. Wochenschr. 102, 364–371 (1989)PubMedGoogle Scholar
  65. 65.
    McNamara, N.A., Andika, R., Kwong, M., Sack, R.A., Fleiszig, S.M.: Interaction of Pseudomonas aeruginosa with human tear fluid components. Curr. Eye Res. 30, 517–525 (2005)PubMedCrossRefGoogle Scholar
  66. 66.
    Fleiszig, S.M., Zaidi, T.S., Ramphal, R., Pier, G.B.: Modulation of Pseudomonas aeruginosa adherence to the corneal surface by mucus. Infect. Immun. 62, 1799–1804 (1994)PubMedGoogle Scholar
  67. 67.
    Rhim, A.D., Stoykova, L., Glick, M.C., Scanlin, T.F.: Terminal glycosylation in cystic fibrosis (CF): a review emphasizing the airway epithelial cell. Glycoconj. J. 18, 649–659 (2001)PubMedCrossRefGoogle Scholar
  68. 68.
    Trivier, D., Houdret, N., Courcol, R.J., Lamblin, G., Roussel, P., Davril, M.: The binding of surface proteins from Staphylococcus aureus to human bronchial mucins. Eur. Respir. J. 10, 804–810 (1997)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Louise Royle
    • 1
    • 2
  • Elizabeth Matthews
    • 3
  • Anthony Corfield
    • 4
  • Monica Berry
    • 4
  • Pauline M. Rudd
    • 1
    • 5
  • Raymond A. Dwek
    • 1
  • Stephen D. Carrington
    • 3
  1. 1.Department of Biochemistry, Glycobiology InstituteUniversity of OxfordOxfordUK
  2. 2.Ludger LtdCulham Science CentreAbingdonUK
  3. 3.Vet Science Centre, School of Agriculture, Food Science and Veterinary MedicineUniversity College DublinDublinIreland
  4. 4.Mucin Research Group, Clinical Science at South BristolUniversity of BristolBristolUK
  5. 5.Dublin–Oxford Glycobiology Laboratory, NIBRT, Conway InstituteUniversity College DublinDublinIreland

Personalised recommendations