Glycoconjugate Journal

, 25:741

Antiproliferative effect of T/Tn specific Artocarpus lakoocha agglutinin (ALA) on human leukemic cells (Jurkat, U937, K562) and their imaging by QD-ALA nanoconjugate

  • Urmimala Chatterjee
  • Partha Pratim Bose
  • Sharmistha Dey
  • Tej P. Singh
  • Bishnu P. Chatterjee
Article

Abstract

T/Tn specificity of Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha (Moraceae) fruit and a heterodimer (16 kD and 12 kD) of molecular mass 28 kD, was further confirmed by SPR analysis using T/Tn glycan containing mammalian glycoproteins. N-terminal amino acid sequence analysis of ALA showed homology at 15, 19–21, 24–27, and 29 residues with other lectin members of Moraceae family viz., Artocarpus integrifolia (jacalin) lectin, Artocarpus hirsuta lectin, and Maclura pomifera agglutinin. It is mitogenic to human PBMC and the maximum proliferation was observed at 1 ng/ml. It showed an antiproliferative effect on leukemic cells, with the highest effect toward Jurkat cells (IC50 13.15 ng/ml). Synthesized CdS quantum dot-ALA nanoconjugate was employed to detect the expression of T/Tn glycans on Jurkat, U937, and K562 leukemic cells surfaces as well as normal lymphocytes by fluorescence microscopy. No green fluorescence was observed with normal lymphocytes indicating that T/Tn determinants, which are recognized as human tumor associated structures were cryptic on normal lymphocyte surfaces, whereas intense green fluorescent dots appeared during imaging of leukemic cells, where such determinants were present in unmasked form. The above results indicated that QD-ALA nanoconjugate is an efficient fluorescent marker for identification of leukemic cell lines that gives rise to high quality images.

Keywords

ALA Artocarpus lakoocha agglutinin Surface plasmon resonance Leukemic cells Quantum dot Nanoconjugate 

Abbreviations

ALA

Artocarpus lakoocha agglutinin

BSM

Bovine submandibular gland mucin

CdS

Cadmium sulphide

ELLSA

Enzyme - linked lectinsorbent assay

ESI-MS

Electron spray ionization mass spectrometry

FPLC

Fast protein liquid chromatography

HBS

Hepes buffered saline

HEPES

N-(2-hydoxyethyl) piperizine-N′-(2-hydroxypropane sulfonic acid)

HSM

Hamster submaxillary mucin

PBMC

Peripheral blood mononuclear cells

PVDF

Polyvinylidene difluoride

Q-ToF

Quadrupole-time of flight

QD

Quantum dot

SDS-PAGE

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

2 ME

2-Mercaptoethanol

References

  1. 1.
    Dixon, H.B.F.: Defining a lectin. Nature 292, 192 (1981)CrossRefGoogle Scholar
  2. 2.
    Sharon, N., Lis, H.: Lectins as cell recognition molecules. Science 246, 227–234 (1989)PubMedCrossRefGoogle Scholar
  3. 3.
    Hakomori, S.: Glycosylation defining cancer malignancy: New wine in an old bottle. Proc. Natl. Acad. Sci. USA. 99, 10231–10233 (2002)PubMedCrossRefGoogle Scholar
  4. 4.
    Kim, Y.J., Varki, A.: Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J. 14, 569–576 (1997)PubMedCrossRefGoogle Scholar
  5. 5.
    Strauchen, J.A.: Lectin receptor as markers of lymphoid cells. II Reed-Sternberg cells share lectin-binding properties of monocyte macrophages. Am. J. Pathol. 116, 370–376 (1984)PubMedGoogle Scholar
  6. 6.
    Cook, D.B., Bustamam, A.A., Brotherick, I., Shenton, B.K., Self, C.H.: Lectin ELISA for the c-erb-B2 tumor marker protein p185 in patients with breast cancer and controls. Clin. Chem. 45, 292–295 (1999)PubMedGoogle Scholar
  7. 7.
    Kamoto, T., Satomura, S., Yoshiki, T., Okada, Y., Henmi, F., Nishiyama, H., Kobayashi, T., Terai, A., Habuchi, T., Ogawa, O.: Lectin-reactive α-fetoprotein (AFP-L3%) curability and prediction of clinical course after treatment of non-seminomatous germ cell tumors. Jpn. J. Clin. Oncol. 32, 472–476 (2002)PubMedCrossRefGoogle Scholar
  8. 8.
    Comunale, M.A., Lowman, M., Long, R.E., Krakover, J., Philip, R., Seeholzer, S., Evans, A.A., Hann, H.W.L., Block, T.M., Mehta, A.S.: Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. J. Proteom. Res. 5, 308–315 (2006)CrossRefGoogle Scholar
  9. 9.
    Lingerfelt, B.M., Mattoussi, H., Goldman, E.R., Mauro, J.M., Anderson, G.P.: Preparation of quantum dot-biotin conjugates and their use in immunochromatography assay. Anal. Chem. 75, 4043–4049 (2003)PubMedCrossRefGoogle Scholar
  10. 10.
    Kaul, Z., Yaguchi, T., Kaul, S.C., Hirano, T., Wadhwa, R., Taira, K.: Mortalin imaging in normal and cancer cells with quantum dot immuno-conjugates. Cell Res. 13, 503–507 (2003)PubMedCrossRefGoogle Scholar
  11. 11.
    Goldman, E.R., Clapp, A.R., Anderson, G.P., Uyeda, H.T., Mauro, J.M., Medintz, I.L., Mattoussi, H.: Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76, 684–688 (2004)PubMedCrossRefGoogle Scholar
  12. 12.
    Chowdhury, S., Ahmed, H., Chatterjee, B.P.: Purification and characterization of an α-D-galactopyranosyl binding lectin from Artocarpus lakoocha seeds. Carbohydr. Res. 159, 137–148 (1987)CrossRefGoogle Scholar
  13. 13.
    Chatterjee, B.P., Ahmed, H., Chowdhury, S.: Further characterization of Artocarpus lakoocha lectin (Artocarpin) purified using rivanol. Carbohydr. Res. 180, 97–110 (1988)CrossRefGoogle Scholar
  14. 14.
    Chowdhury, S., Chatterjee, B.P.: Artocarpin–galactomannan interaction: Characterization of combining site of artocarpin. Phytochemistry 32, 243–249 (1993)PubMedCrossRefGoogle Scholar
  15. 15.
    Singh, T., Chatterjee, U., Wu, J.H., Chatterjee, B.P., Wu, A.M.: Carbohydrate recognition factors of a Ta (Gal β1→ 3 GalNAC α 1 →Ser/Thr) and Tn (GalNAc α 1 →Ser/Thr) specific lectin isolated from the seeds of Artocarpus lakoocha. Glycobiology 15, 67–78 (2005)PubMedCrossRefGoogle Scholar
  16. 16.
    Wu, A.M., Pigman, W.: Preparation and characterization of armadillo submandibular glycoproteins. Biochem. J. 161, 37–47 (1977)PubMedGoogle Scholar
  17. 17.
    Duk, M., Lisowska, E., Wu, J.H., Wu, A.M.: The biotin/avidin mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal. Biochem. 221, 266–272 (1994)PubMedCrossRefGoogle Scholar
  18. 18.
    Teichberg, V.I., Aberdam, D., Erez, U., Pinelli, E.: Affinity-repulsion chromatography, principle and application to lectins. J. Biol. Chem. 263, 14086–14092 (1988)PubMedGoogle Scholar
  19. 19.
    Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)PubMedCrossRefGoogle Scholar
  20. 20.
    Bhowal, J., Guha, A.K., Chatterjee, B.P.: Purification and molecular characterization of a sialic acid specific lectin from the phytopathogenic fungus Macrophomina phaseolina. Carbohydr. Res. 340, 1973–1982 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    Reisfled, R.A., Lewis, U.S., Williams, D.E.: Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 195, 281–283 (1962)CrossRefGoogle Scholar
  22. 22.
    Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685 (1970)CrossRefGoogle Scholar
  23. 23.
    Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proct. Natl. Acad. Sci. USA. 76, 4350–4354 (1979)CrossRefGoogle Scholar
  24. 24.
    Edman, P., Begg, G.: A protein sequencer. Eur. J. Biochem. 1, 80–91 (1967)PubMedCrossRefGoogle Scholar
  25. 25.
    Szabo, A., Stolz, L., Granzow, R.: Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Curr. Opin. Struct. Biol. 5, 699–705 (1995)PubMedCrossRefGoogle Scholar
  26. 26.
    Bhattacharyya, I., Mandal, C., Chowdhury, M.: Functional heterogeneity of sialic acid binding agglutinin of rat uteri towards in vitro lymphocyte transformation. Am. J. Reprod. Immunl. 20, 81–86 (1989)Google Scholar
  27. 27.
    Mandal, C., Chowdhury, M.: The polyclonal activation of lymphocytes and T cell mitogenicity by a unique sialic-acid-binding lectin from the hemolymph of Achatina fulica snail. Immunopharmacology 20, 63–72 (1990)PubMedCrossRefGoogle Scholar
  28. 28.
    Wong, J.H., Ng, T.B.: Isolation and characterization of a glucose/mannose/rahmnose specific lectinfrom the knife bean Canavalia gladiata. Arch. Biochem. Biophys. 439, 91–98 (2005)PubMedCrossRefGoogle Scholar
  29. 29.
    Ngai, P.H.K., Ng, T.B.: A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem. Biophys. Res. Com. 314, 988–993 (2004)PubMedCrossRefGoogle Scholar
  30. 30.
    Chatterjee, B.P., Ahmed, H.: Lectins from plants and animals: carbohydrate specificity, unity in diversity and diversity in unity. Biochem. Arch. 14, 1–5 (1998)Google Scholar
  31. 31.
    Namjuntra, P., Muanwongyathi, P., Chulavatnatol, R.: A sperm agglutinating lectin from seeds of jack fruit (Artocarpus heterophyllus). Biochem. Biophys. Res. Commun. 128, 833–839 (1985)PubMedCrossRefGoogle Scholar
  32. 32.
    Chei, W.G., Hounsell, E.F., Cashmore, G.C., Rosankie-wicz, J.R., Bauer, C.J., Feeney, J., Feizi, T., Lawson, A.M.: Neutral oligosaccharides of bovine submaxillary mucin. A combined mass spectrometry and 1H-NMR study. Eur. J. Biochem. 203, 257–268 (1992)CrossRefGoogle Scholar
  33. 33.
    Podbielska, M., Fredriksson, S.A., Nilsson, B., Lisowaska, E., Krotkeiewski, H.: ABH blood group antigens in O-glycans of human glycophorin A. Arch. Biochem. Biophys. 429, 145–153 (2004)PubMedCrossRefGoogle Scholar
  34. 34.
    Nilsson, B., Norden, N.E., Svensson, S.: Structural studies on the carbohydrate portion of fetuin. J. Biol.Chem. 254, 4545–4553 (1979)PubMedGoogle Scholar
  35. 35.
    Springer, G.: T and Tn pancarcinoma markers: autoantigenic adhesion molecules in pathogenesis, pre-biopsy carcinoma detection and long-term breast-carcinoma immunotherapy. Crit. Rev. Oncogen. 6, 57–85 (1995)Google Scholar
  36. 36.
    Springer, G.: Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis and immunotherapy. J. Mol. Med. 75, 594–602 (1997)PubMedCrossRefGoogle Scholar
  37. 37.
    Singh, J., Singh, J., Kamboj, S.S.: A novel mitogenic and antiproliferative lectin from a wild cobra lily, Arisaema flavum. Biochem. Biophys. Res. Commun. 318, 1057–1065 (2004)PubMedCrossRefGoogle Scholar
  38. 38.
    Wang, H.X., Ng, T.B., Liu, W.K., Ooi, V.E.C., Chang, S.T.: Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mangolicum. Int. Peptide Protein Res. 46, 508–513 (1995)Google Scholar
  39. 39.
    Xiaochao, X.U., Chuanfang, W.U., Chao, L.I.U., Yongting, L.U.O., Jian, L.I., Xinping, Z.H.A.O., Van Damme, E., Jinku, B.: Purification and characterization of a mannose-binding lectin from the rhizomes of Aspidistra elatior Blume with antiproliferative activity. Acta. Biochim. Biophys. Sinica 39, 507–519 (2007)CrossRefGoogle Scholar
  40. 40.
    Wong, J.J., Ng, T.B.: Purification of a trypsin-stable lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activity. Biochem. Biophys. Res. Commun. 301, 545–550 (2003)PubMedCrossRefGoogle Scholar
  41. 41.
    Wang, H., Ng, T.B., Ooi, V.E., Liu, W.K.: Effects of lectins with different carbohydrate binding specificities on hepatoma, choriocarcinoma, melanoma and osteosarcoma cell lines. Int. J. Biochem. Cell Biol. 32, 365–372 (2000)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Urmimala Chatterjee
    • 1
    • 4
  • Partha Pratim Bose
    • 1
    • 5
  • Sharmistha Dey
    • 2
  • Tej P. Singh
    • 2
  • Bishnu P. Chatterjee
    • 1
    • 3
  1. 1.Department of Biological ChemistryIndian Association for the Cultivation of ScienceJadavpurIndia
  2. 2.Department of BiophysicsAll India Institute of Medical SciencesAnsari NagarIndia
  3. 3.Department of BiotechnologyWest Bengal University of TechnologyKolkataIndia
  4. 4.Department of Anatomy, Physiology and BiochemistrySwedish University of Agricultural ScienceUppsalaSweden
  5. 5.Department of Biochemistry and Organic ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations