Glycoconjugate Journal

, Volume 25, Issue 3, pp 237–244 | Cite as

Sialic acid metabolism is involved in the regulation of gene expression during neuronal differentiation of PC12 cells

  • Maria KontouEmail author
  • Christian Bauer
  • Werner Reutter
  • Rüdiger Horstkorte


Sialic acid precursors are mediators of the sialic acid pathway. In this manuscript we present evidence that the application of sialic acid a precursor modulates gene expression and cell differentiation. The concept that sugars are involved in cellular transcription was first proposed by Jacob and Monod nearly 40 years ago studying the regulation of the lac-operon in prokaryotes. Surprisingly, these findings have never been transferred to eukaryotic systems. For our studies we have chosen PC12 cells. PC12-cells differentiate after application of NGF into a neuron-like phenotype. It is shown that treatment of PC12 cells with two different sialic acid precursors N-acetyl- or N-propanoylmannosamine, without application of NGF also induces neurite outgrowth. Moreover, the PC12 cells show the same morphology as the NGF-treated cells. Surprisingly, after application of both sialic acid precursors the phosphorylation and translocation of erk1/2 into the nucleus are activated, thus influencing the expression of genes involved in the differentiation of cells, such as the transcription factor c-Jun or TOAD-64/Ulip/CRMP (Turned ON After Division, 64 kd/ unc-33-like phosphoprotein/Collapsin Response Mediator Protein). These are the first experimental data showing that the sialic acid metabolism is closely associated with signal transduction and regulation of neuronal differentiation.


Proliferation Gene expression Differentiation 



The authors are grateful to Sabine Nöhring for technical support. This work received financial support by the Deutsche Forschungsgemeinschaft, and the Fonds der Chemischen Industrie. Dr. M. Kontou received a grant of the Berliner Programm zur Förderung der Chancengleichheit für Frauen in Forschung und Lehre.


  1. 1.
    Schauer, R.: Achievements and challenges of sialic acid research. Glycoconj. J. 17, 485–499 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    Morell, A.G., Gregoriades, G., Scheinberg, I.H., Hickman, J., Ashwell, G.: The role of sialic acid in determining the survival of glycoproteins in the circulation. J. Biol. Chem. 246, 1461–1467 (1971)PubMedGoogle Scholar
  3. 3.
    Varki, A.: Sialic acids as ligands in recognition phenomena. FASEB J. 11, 248–255 (1997)PubMedGoogle Scholar
  4. 4.
    Crocker, P.R., Paulson, J.C., Varki, A.: Siglecs and their roles in the immune system. Nat. Rev. Immunol. 4, 255–66 (2007)CrossRefGoogle Scholar
  5. 5.
    Comb, D.G., Roseman, S.: Enzymic synthesis of N-acetyl-D-mannosamine. Biochim. Biophys. Acta. 29, 653–654 (1958)CrossRefPubMedGoogle Scholar
  6. 6.
    Kayser, H., Zeitler, R., Kannicht, C., Grunow, D., Nuck, R., Reutter, W.: Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992)PubMedGoogle Scholar
  7. 7.
    Schmidt, C., Stehling, P., Schnitzer, J., Reutter, W., Horstkorte, R.: Biochemical engineering of neural cell surfaces by the synthetic N-propanoyl-substituted neuraminic acid precursor. J. Biol. Chem. 273, 19146–19152 (1998)CrossRefPubMedGoogle Scholar
  8. 8.
    Keppler, O.T., Horstkorte, R., Pawlita, M., Schmidt, C., Reutter, W.: Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001)CrossRefPubMedGoogle Scholar
  9. 9.
    Mahal, L.K., Yarema, K.J., Bertozzi, C.R.: Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997)CrossRefPubMedGoogle Scholar
  10. 10.
    Pon, R.A., Lussier, M., Yang, Q.L., Jennings, H.J.: N-Propionylated group B meningococcal polysaccharide mimics a unique bactericidal capsular epitope in group B Neisseria meningitidis. J. Exp. Med. 185, 1929–1938 (1997)CrossRefPubMedGoogle Scholar
  11. 11.
    Collins, B.E., Fralich, T.J., Itonori, S., Ichikawa, V., Schnaar, R.L.: Conversion of cellular sialic acid expression from N-acetyl- to N-glycolylneuraminic acid using a synthetic precursor, N-glycolylmannosamine pentaacetate: inhibition of myelin-associated glycoprotein binding to neural cells. Glycobiology 10, 11–20 (2000)CrossRefPubMedGoogle Scholar
  12. 12.
    Sampathkumar, S.G., Li, A.V., Jones, M.B., Sun, Z., Yarema, K.J.: Metabolic installation of thiols into sialic acid modulates adhesion and stem cell biology. Nat. Chem. Biol. 2, 149–152 (2006)CrossRefPubMedGoogle Scholar
  13. 13.
    Schmidt, C., Ohlemeyer, C., Kettenmann, H., Reutter, W., Horstkorte, R.: Incorporation of N-propanoylneuraminic acid leads to calcium oscillations in oligodendrocytes upon the application of GABA. FEBS Lett. 478, 276–80 (2000)CrossRefPubMedGoogle Scholar
  14. 14.
    Vaudry, D., Storck, P.J., Lazarovici, P., Eiden, L.E.: Signalling pathways for PC12 differentiation: making the right connections. Science 296, 1648–1649 (2002)CrossRefPubMedGoogle Scholar
  15. 15.
    Levi, A., Eldrige, J.D., Paterson, B.M.: Molecular cloning of a gene sequence regulated by nerve growth factor. Science 229, 393–395 (1985)CrossRefPubMedGoogle Scholar
  16. 16.
    Kaplan, D.R., Stephens, R.M.: Neurotrophin signal transduction by the Trk receptor. J. Neurobiol. 25, 1404–1417 (1994)CrossRefPubMedGoogle Scholar
  17. 17.
    Thomas, S.M., DeMarco, M., D’Arcangelo, G., Halegoua, S., Brugge, J.S.: Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68, 1031–1040 (1992)CrossRefPubMedGoogle Scholar
  18. 18.
    Leppa, S., Saffrich, R., Ansorge, W., Bohmann, D.: Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. EMBO J. 17, 4404–4413 (1998)CrossRefPubMedGoogle Scholar
  19. 19.
    Dragunow, M., Xu, R., Walton, M., Woodgate, A., Lawlor, P., MacGibbon, G.A., Young, D., Gibbons, H., Lipski, J., Muravlev, A., Pearson, A., During, M.: c-Jun promotes neurite outgrowth and survival in PC12 cells. Brain Res. Mol. Brain Res. 83, 20–33 (2000)CrossRefPubMedGoogle Scholar
  20. 20.
    Büttner, B., Kannnicht, C., Schmidt, C., Löster, K., Reutter, W., Lee, H.-Y., Nöhring, S., Horstkorte, R.: Biochemical engineering of cell surface sialic acids stimulates axonal growth. J. Neurosci. 22, 8869–8875 (2002)PubMedGoogle Scholar
  21. 21.
    Charrier, E., Reibel, S., Rogemond, V., Aguera, M., Thomasset, N., Honnorat, J.: Collapsin response mediator proteins (CRMPs): involvement in nervous system development and adult neurodegenerative disorders. Mol. Neurobiol. 28, 51–64 (2003)CrossRefPubMedGoogle Scholar
  22. 22.
    Waetzig, V., Herdegen, T.: The concerted signaling of ERK1/2 and JNKs is essential for PC12 cell neuritogenesis and converges at the level of target proteins. Mol. Cell Neurosci. 24, 238–249 (2003)CrossRefPubMedGoogle Scholar
  23. 23.
    Fritz, G., Kaina, B.: Activation of c-Jun N-terminal kinase 1 by UV irradiation is inhibited by wortmannin without affecting c-iun expression. Mol. Cell Biol. 19, 1768–1774 (1999)PubMedGoogle Scholar
  24. 24.
    Quach, T.T., Mosinger Jr., B., Ricard, D., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Stankoff, B., Honnorat, J., Belin, M.F., Kolattukudy, P.: Collapsin response mediator protein-3/unc-33-like protein-4 gene: organization, chromosomal mapping and expression in the developing mouse brain. Gene 242, 175–182 (2000)CrossRefPubMedGoogle Scholar
  25. 25.
    Horiuchi, M., El Far, O., Betz, H.: Ulip6, a novel unc-33 and dihydropyrimidinase related protein highly expressed in developing rat brain. FEBS Lett. 480, 283–286 (2000)CrossRefPubMedGoogle Scholar
  26. 26.
    Dignam, J.D., Lebowitz, R.M., Roeder, R.G.: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maria Kontou
    • 1
    Email author
  • Christian Bauer
    • 1
  • Werner Reutter
    • 1
  • Rüdiger Horstkorte
    • 2
  1. 1.Institut für Biochemie und MolekularbiologieCharité-Universitätsmedizin Berlin, Campus Benjamin FranklinBerlin-DahlemGermany
  2. 2.Institut für Physiologische ChemieMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations