Glycoconjugate Journal

, Volume 25, Issue 3, pp 259–268 | Cite as

Surface α2-3- and α2-6-sialylation of human monocytes and derived dendritic cells and its influence on endocytosis

  • Paula A. VideiraEmail author
  • Inês F. Amado
  • Hélio J. Crespo
  • M. Carmen Algueró
  • Fabio Dall’Olio
  • M. Guadalupe Cabral
  • Hélder Trindade


Several glycoconjugates are involved in the immune response. Sialic acid is frequently the glycan terminal sugar and it may modulate immune interactions. Dendritic cells (DCs) are antigen-presenting cells with high endocytic capacity and a central role in immune regulation. On this basis, DCs derived from monocytes (mo-DC) are utilised in immunotherapy, though many features are ignored and their use is still limited. We analyzed the surface sialylated glycans expressed during human mo-DC generation. This was monitored by lectin binding and analysis of sialyltransferases (ST) at the mRNA level and by specific enzymatic assays. We showed that α2-3-sialylated O-glycans and α2-6- and α2-3-sialylated N-glycans are present in monocytes and their expression increases during mo-DC differentiation. Three main ST genes are committed with this rearrangement: ST6Gal1 is specifically involved in the augmented α2-6-sialylated N-glycans; ST3Gal1 contributes for the α2-3-sialylation of O-glycans, particularly T antigens; and ST3Gal4 may contribute for the increased α2-3-sialylated N-glycans. Upon mo-DC maturation, ST6Gal1 and ST3Gal4 are downregulated and ST3Gal1 is altered in a stimulus-dependent manner. We also observed that removing surface sialic acid of immature mo-DC by neuraminidase significantly decreased its endocytic capacity, while it increased in monocytes. Our results indicate the STs expression modulates the increased expression of surface sialylated structures during mo-DC generation, which is probably related with changes in cell mechanisms. The ST downregulation after mo-DC maturation probably results in a decreased sialylation or sialylated glycoconjugates involved in the endocytosis, contributing to the downregulation of one or more antigen-uptake mechanisms specific of mo-DC.


Sialic acid Dendritic cell Monocyte Endocytosis Sialyltransferase Immunotherapy 



Dendritic cell


monocyte derived DC






Sambucus nigra lectin


Maackia amurensis lectin


Arachis hypogaea lectin



We thank Manuela Correia for her technical assistance with Real Time PCR and Glória Nunes with her help in flow cytometry.


  1. 1.
    Norbury, C.C.: Drinking a lot is good for dendritic cells. Immunology 117, 443–451 (2006)CrossRefPubMedGoogle Scholar
  2. 2.
    Steinman, R.M.: The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991)CrossRefPubMedGoogle Scholar
  3. 3.
    Figdor, C.G., de Vries, I.J., Lesterhuis, W.J., Melief, C.J.: Dendritic cell immunotherapy: mapping the way. Nat. Med. 10, 475–480 (2004)CrossRefPubMedGoogle Scholar
  4. 4.
    Schuurhuis, D.H., Fu, N., Ossendorp, F., Melief, C.J.: Ins and outs of dendritic cells, Int.. Arch. Allergy Immunol. 140, 53–72 (2006)CrossRefGoogle Scholar
  5. 5.
    Harduin-Lepers, A., Vallejo-Ruiz, V., Krzewinski-Recchi, M.A., Samyn-Petit, B., Julien, S., Delannoy, P.: The human sialyltransferase family. Biochimie 83, 727–737 (2001)CrossRefPubMedGoogle Scholar
  6. 6.
    Ellies, L.G., Sperandio, M., Underhill, G.H., Yousif, J., Smith, M., Priatel, J.J., Kansas, G.S., Ley, K., Marth, J.D.: Sialyltransferase specificity in selectin ligand formation. Blood 100, 3618–3625 (2002)CrossRefPubMedGoogle Scholar
  7. 7.
    Jamieson, J.C., McCaffrey, G., Harder, P.G.: Sialyltransferase: a novel acute-phase reactant. Comp. Biochem. Physiol., B. 105, 29–33 (1993)CrossRefPubMedGoogle Scholar
  8. 8.
    Priatel, J.J., Chui, D., Hiraoka, N., Simmons, C.J., Richardson, K.B., Page, D.M., Fukuda, M., Varki, N.M., Marth, J.D.: The ST3Gal-I sialyltransferase controls CD8+ T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 12, 273–283 (2000)CrossRefPubMedGoogle Scholar
  9. 9.
    Moody, A.M., North, S.J., Reinhold, B., Van Dyken, S.J., Rogers, M.E., Panico, M., Dell, A., Morris, H.R., Marth, J.D., Reinherz, E.L.: Sialic acid capping of CD8beta core 1-O-glycans controls thymocyte-major histocompatibility complex class I interaction. J. Biol. Chem. 278, 7240–7246 (2003)CrossRefPubMedGoogle Scholar
  10. 10.
    Hennet, T., Chui, D., Paulson, J.C., Marth, J.D.: Immune regulation by the ST6Gal sialyltransferase. Proc. Natl. Acad. Sci. U.S.A. 95, 4504–4509 (1998)CrossRefPubMedGoogle Scholar
  11. 11.
    Meijerink, J., Mandigers, C., van de Locht, L., Tonnissen, E., Goodsaid, F., Raemaekers, J.: A novel method to compensate for different amplification efficiencies between patient DNA samples in quantitative real-time PCR. J. Mol. Diagnostics 3, 55–61 (2001)Google Scholar
  12. 12.
    Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25, 402–8 (2001)CrossRefPubMedGoogle Scholar
  13. 13.
    Dall'Olio, F., Malagolini, N., Guerrini, S., Lau, J.T., Serafini-Cessi, F.: Differentiation-dependent expression of human beta-galactoside alpha 2,6-sialyltransferase mRNA in colon carcinoma CaCo-2 cells. Glycoconj. J. 13, 115–21 (1996)CrossRefPubMedGoogle Scholar
  14. 14.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265–75 (1951)PubMedGoogle Scholar
  15. 15.
    Krzewinski-Recchi, M.A., Julien, S., Juliant, S., Teintenier-Lelievre, M., Samyn-Petit, B., Montiel, M.D., Mir, A.M., Cerutti, M., Harduin-Lepers, A., Delannoy, P.: Identification and functional expression of a second human beta-galactoside alpha2,6-sialyltransferase, ST6Gal II, Eur. J. Biochem. 270, 950–61 (2003)Google Scholar
  16. 16.
    Takashima, S., Tsuji, S., Tsujimoto, M.: Characterization of the second type of human beta-galactoside alpha 2,6-sialyltransferase (ST6Gal II), which sialylates galbeta 1,4GlcNAc structures on oligosaccharides preferentially. Genomic analysis of human sialyltransferase genes. J. Biol. Chem. 277, 45719–28 (2002)CrossRefPubMedGoogle Scholar
  17. 17.
    Dall'Olio, F., Malagolini, N., Chiricolo, M.: Beta-galactoside alpha2,6-sialyltransferase and the sialyl alpha2,6-galactosyl-linkage in tissues and cell lines. Methods Mol. Biol. 347, 157–70 (2006)PubMedGoogle Scholar
  18. 18.
    Harduin-Lepers, A., Stokes, D.C., Steelant, W.F., Samyn-Petit, B., Krzewinski-Recchi, M.A., Vallejo-Ruiz, V., Zanetta, J.P., Auge, C., Delannoy, P.: Cloning, expression and gene organization of a human Neu5Ac alpha 2-3Gal beta 1-3GalNAc alpha 2,6-sialyltransferase: HST6GalNAcIV. Biochem. J. 352, (Pt 1), 37–48 (2000)CrossRefPubMedGoogle Scholar
  19. 19.
    Sallusto, F., Cella, M., Danieli, C., Lanzavecchia, A.: Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995)CrossRefPubMedGoogle Scholar
  20. 20.
    Kikuchi, K., Yanagawa, Y., Onoe, K.: CCR7 ligand-enhanced phagocytosis of various antigens in mature dendritic cells-time course and antigen distribution different from phagocytosis in immature dendritic cells. Microbiol. Immunol. 49, 535–44 (2005)PubMedGoogle Scholar
  21. 21.
    Marino, J.H., Hoffman, M., Meyer, M., Miller, K.S.: Sialyltransferase mRNA abundances in B cells are strictly controlled, correlated with cognate lectin binding, and differentially responsive to immune signaling in vitro. Glycobiology 14, 1265–74 (2004)CrossRefPubMedGoogle Scholar
  22. 22.
    Banchereau, J., Steinman, R.M.: Dendritic cells and the control of immunity. Nature 392, 245–252 (1998)CrossRefPubMedGoogle Scholar
  23. 23.
    Collins, B.E., Blixt, O., Bovin, N.V., Danzer, C.P., Chui, D., Marth, J.D., Nitschke, L., Paulson, J.C.: Constitutively unmasked CD22 on B cells of ST6Gal I knockout mice: novel sialoside probe for murine CD22. Glycobiology 12, 563–571 (2002)CrossRefPubMedGoogle Scholar
  24. 24.
    Dall'Olio, F., Chiricolo, M.: Sialyltransferases in cancer. Glycoconj. J. 18, 841–850 (2001)CrossRefPubMedGoogle Scholar
  25. 25.
    Kitagawa, H., Paulson, J.C.: Differential expression of five sialyltransferase genes in human tissues. J. Biol. Chem. 269, 17872–17878 (1994)PubMedGoogle Scholar
  26. 26.
    Kim, Y.J., Kim, K.S., Kim, S.H., Kim, C.H., Ko, J.H., Choe, I.S., Tsuji, S., Lee, Y.C.: Molecular cloning and expression of human gal beta 1,3GalNAc alpha 2,3-sialytransferase (hST3Gal II),. Biochem. Biophys. Biophys. Res. Commun. 228, 324–327 (1996)CrossRefGoogle Scholar
  27. 27.
    Brockhausen, I.: Pathways of O-glycan biosynthesis in cancer cells. Biochim. Biophys. Acta 1473, 67–95 (1999)PubMedGoogle Scholar
  28. 28.
    Okajima, T., Fukumoto, S., Miyazaki, H., Ishida, H., Kiso, M., Furukawa, K., Urano, T., Furukawa, K.: Molecular cloning of a novel alpha2,3-sialyltransferase (ST3Gal VI) that sialylates type II lactosamine structures on glycoproteins and glycolipids. J. Biol. Chem. 274, 11479–11486 (1999)CrossRefPubMedGoogle Scholar
  29. 29.
    Kieffer, J.D., Fuhlbrigge, R.C., Armerding, D., Robert, C., Ferenczi, K., Camphausen, R.T., Kupper, T.S.: Neutrophils, monocytes, and dendritic cells express the same specialized form of PSGL-1 as do skin-homing memory T cells: cutaneous lymphocyte antigen. Biochem. Biophys. Res. Commun. 285, 577–587 (2001)CrossRefPubMedGoogle Scholar
  30. 30.
    Ardavin, C., Martinez del Hoyo, G., Martin, P., Anjuere, F., Arias, C.F., Marin, A.R., Ruiz, S., Parrillas, V., Hernandez, H.: Origin and differentiation of dendritic cells. Trends Immunol. 22, 691–700 (2001)CrossRefPubMedGoogle Scholar
  31. 31.
    Jenner, J., Kerst, G., Handgretinger, R., Muller, I.: Increased alpha2,6-sialylation of surface proteins on tolerogenic, immature dendritic cells and regulatory T cells. Exp. Hematol. 34, 1212–1218 (2006)CrossRefPubMedGoogle Scholar
  32. 32.
    Geijtenbeek, T.B., van Vliet, S.J., Engering, A., ‘t Hart, B.A., van Kooyk, Y.: Self- and nonself-recognition by C-type lectins on dendritic cells. Annu. Rev. Immunol. 22, 33–54 (2004)CrossRefPubMedGoogle Scholar
  33. 33.
    Bleijs, D.A., Geijtenbeek, T.B., Figdor, C.G., van Kooyk, Y.: DC-SIGN and LFA-1: a battle for ligand. Trends Immunol. 22, 457–463 (2001)CrossRefPubMedGoogle Scholar
  34. 34.
    Jiang, W., Swiggard, W.J., Heufler, C., Peng, M., Mirza, A., Steinman, R.M., Nussenzweig, M.C.: The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375, 151–155 (1995)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Paula A. Videira
    • 1
    Email author
  • Inês F. Amado
    • 1
  • Hélio J. Crespo
    • 1
  • M. Carmen Algueró
    • 1
  • Fabio Dall’Olio
    • 2
  • M. Guadalupe Cabral
    • 1
  • Hélder Trindade
    • 1
  1. 1.Departamento de Imunologia FCM-UNLLisbonPortugal
  2. 2.Dipartimento di Patologia SperimentaleBolognaItaly

Personalised recommendations