Glycoconjugate Journal

, Volume 25, Issue 4, pp 291–304 | Cite as

Glycosphingolipids in vascular endothelial cells: relationship of heterogeneity in Gb3Cer/CD77 receptor expression with differential Shiga toxin 1 cytotoxicity

  • Christian H. Schweppe
  • Martina Bielaszewska
  • Gottfried Pohlentz
  • Alexander W. Friedrich
  • Heino Büntemeyer
  • M. Alexander Schmidt
  • Kwang S. Kim
  • Jasna Peter-Katalinić
  • Helge Karch
  • Johannes Müthing
Article

Abstract

Shiga toxin (Stx) 1 binds to the glycosphingolipid (GSL) globotriaosylceramide (Gb3Cer/CD77) and injures human endothelial cells. In order to gain insight into Stx1-induced cellular impairment, we analysed in detail the molecular heterogeneity of Stx1 receptors in two endothelial cell lines differing in their Stx1-sensitivity. We observed a moderate sensitivity to Stx1 of human brain microvascular endothelial cells (HBMECs, CD50 > 200 ng/ml), but a considerably higher mortality rate in cultures of EA.hy 926 cells, a cell line derived from human umbilical vein endothelial cells (CD50 of 0.2 ng/ml). Immunofluorescence microscopy demonstrated the presence of Gb3Cer in both cell lines, but showed an enhanced content of Gb3Cer in EA.hy 926 cells. Solid phase overlay binding assays of isolated GSLs combined with nanoelectrospray ionization quadrupole time-of-flight mass spectrometry demonstrated a balanced proportion of Gb3Cer and globotetraosylceramide (Gb4Cer) in HBMECs, but an increase of Gb3Cer and absence of Gb4Cer in EA.hy 926 cells. Gb3Cer species with C24:1/C24:0 fatty acids were found to dominate over those with C16:0 fatty acids in EA.hy 926 cells, but were similarly distributed in HBMECs. Reverse transcriptase polymerase chain reaction indicated the concomitant presence of Gb3Cer and Gb4Cer synthases in HBMECs, whereas EA.hy 926 cells expressed Gb3Cer synthase, but completely lacked Gb4Cer synthase. This deficiency, resulting in the accumulation of Gb3Cer in EA.hy 926 cells, represents the most prominent molecular reason that underlies the different Stx1 sensitivities of HBMECs and EA.hy 926 endothelial cells.

Keywords

Glycolipids HBMECs EA.hy 926 cells Glycosyltransferases 

Abbreviations

CID

Collision-induced-dissociation

DTAF

dichlorotriazinylamino fluorescein

EA.hy 926

HUVEC derived endothelial cell line

ESI Q-TOF-MS

electrospray ionization quadrupole time-of-flight mass spectrometry

GSL(s)

glycosphingolipid(s)

HBMECs

human brain microvascular endothelial cells

HPTLC

high-performance thin-layer chromatography

HUVECs

human umbilical vein endothelial cells

RT-PCR

reverse transcriptase polymerase chain reaction

Stx

Shiga toxin

References

  1. 1.
    Sandvig, K.: Shiga toxins. Toxicon. 39, 1629–1635 (2001)PubMedCrossRefGoogle Scholar
  2. 2.
    Karch, H., Tarr, P.I., Bielaszewska, M.: Enterohaemorrhagic Escherichia coli in human medicine. Int. J. Med. Microbiol. 295, 405–418 (2005)PubMedCrossRefGoogle Scholar
  3. 3.
    Ling, H., Boodhoo, A., Hazes, B., Cummings, M.D., Armstrong, G.D., Brunton, J.L., Read, R.J.: Structure of the Shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3. Biochemistry 37, 1777–1788 (1998)PubMedCrossRefGoogle Scholar
  4. 4.
    Lingwood, C.A.: Role of verotoxin receptors in pathogenesis. Trends Microbiol. 4, 147–153 (1996)PubMedCrossRefGoogle Scholar
  5. 5.
    Sandvig, K., Garred, Ø., Prydz, K., Kozlov, J.V., Hansen, S.H., van Deurs, B.: Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 358, 510–512 (1992)PubMedCrossRefGoogle Scholar
  6. 6.
    Endo, Y., Tsurugi, K., Yutsudo, T., Takeda, Y., Ogasawara, T., Igarashi, K.: Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and Shiga toxin on eukaryotic ribosomes. Eur. J. Biochem. 171, 45–50 (1988)PubMedCrossRefGoogle Scholar
  7. 7.
    Garred, Ø., van Deurs, B., Sandvig, K.: Furin-induced cleavage and activation of Shiga toxin. J. Biol. Chem. 270, 10817–10821 (1995)PubMedCrossRefGoogle Scholar
  8. 8.
    Stults, C.L., Sweeley, C.C., Macher, B.A.: Glycosphingolipids: structure, biological source, and properties. Methods Enzymol. 179, 167–214 (1989)PubMedCrossRefGoogle Scholar
  9. 9.
    Müthing, J.: Mammalian glycosphingolipids. In: Freiser-Reid, B., Tatsuka, K., Thiem, J. (eds.) Glycoscience: Chemistry and Chemical Biology, vol. 3, pp. 2220–2249. Springer-Verlag, Heidelberg, Germany (2001)Google Scholar
  10. 10.
    Schnaar, R.L.: Glycosphingolipids in cell surface recognition. Glycobiology 1, 477–485 (1991)PubMedCrossRefGoogle Scholar
  11. 11.
    Feizi, T.: Carbohydrate-mediated recognition systems in innate immunity. Immunol. Rev. 173, 79–88 (2000)PubMedCrossRefGoogle Scholar
  12. 12.
    Schlossmacher, M.G., Cullen, V., Müthing, J.: The glucocerebrosidase gene and Parkinson’s disease in Ashkenazi Jews. N. Engl. J. Med. 352, 728–731 (2005)PubMedCrossRefGoogle Scholar
  13. 13.
    Karlsson, K.A.: Animal glycosphingolipids as membrane attachment sites for bacteria. Annu. Rev. Biochem. 58, 309–350 (1989)PubMedCrossRefGoogle Scholar
  14. 14.
    Teneberg, S., Ångström, J., Ljungh, Å.: Carbohydrate recognition by enterohemorrhagic Escherichia coli: characterization of a novel glycosphingolipid from cat small intestine. Glycobiology. 14, 187–196 (2004)PubMedCrossRefGoogle Scholar
  15. 15.
    Miller-Podraza, H., Lanne, B., Ångström, J., Teneberg, S., Milh, M.A., Jovall, P.Å., Karlsson, H., Karlsson, K.A.: Novel binding epitope for Helicobacter pylori found in neolacto carbohydrate chains: structure and cross-binding properties. J. Biol. Chem. 280, 19695–19703 (2005)PubMedCrossRefGoogle Scholar
  16. 16.
    Nakamura, K., Suzuki, M., Inagaki, F., Yamakawa, T., Suzuki, A.: A new ganglioside showing choleragenoid-binding activity in mouse spleen. J. Biochem. 101, 825–835 (1987)PubMedGoogle Scholar
  17. 17.
    Stins, M.F., Gilles, F., Kim, K.S.: Selective expression of adhesion molecules on human brain microvascular endothelial cells. J. Neuroimmunol. 76, 81–90 (1997)PubMedCrossRefGoogle Scholar
  18. 18.
    Edgell, C.J.S., McDonald, C.C., Graham, J.B.: Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. U.S.A. 80, 3734–3737 (1983)PubMedCrossRefGoogle Scholar
  19. 19.
    Kim, K.S.: Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat. Rev. Neurosci. 4, 376–385 (2003)CrossRefGoogle Scholar
  20. 20.
    Bielaszewska, M., Karch, H.: Consequences of enterohaemorrhagic Escherichia coli infection for the vascular endothelium. Thromb. Haemost. 94, 312–318 (2005)PubMedGoogle Scholar
  21. 21.
    Kim, K.J., Chung, J.W., Kim, K.S.: 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J. Biol. Chem. 280, 1360–1368 (2005)PubMedCrossRefGoogle Scholar
  22. 22.
    Shin, S., Kim, K.S.: RhoA and Rac1 contribute to type III group B streptococcal invasion of human brain microvascular endothelial cells. Biochem. Biophys. Res. Commun. 345, 538–542 (2006)PubMedCrossRefGoogle Scholar
  23. 23.
    Khan, N.A., Kim, Y., Shin, S., Kim, K.S.: FimH-mediated Escherichia coli K1 invasion of human brain microvascular endothelial cells. Cell. Microbiol. 9, 169–178 (2007)PubMedCrossRefGoogle Scholar
  24. 24.
    Bielaszewska, M., Sinha, B., Kuczius, T., Karch, H.: Cytolethal distending toxin from Shiga toxin-producing Escherichia coli O157 causes irreversible G2/M arrest, inhibition of proliferation, and death of human endothelial cells. Infect. Immun. 73, 552–562 (2005)PubMedCrossRefGoogle Scholar
  25. 25.
    Kügler, S., Böcker, K., Heusipp, G., Greune, L., Kim, K.S., Schmidt, M.A.: Pertussis toxin transiently affects barrier integrity, organelle organization and transmigration of monocytes in a human brain microvascular endothelial cell barrier model. Cell. Microbiol. 9, 619–632 (2007)PubMedCrossRefGoogle Scholar
  26. 26.
    Emeis, J.J., Edgell, C.J.S.: Fibrinolytic properties of a human endothelial hybrid cell line (Ea.hy 926). Blood 71, 1669–1675 (1988)PubMedGoogle Scholar
  27. 27.
    Schönherr, E., Schaefer, L., O’Connell, B.C., Kresse, H.: Matrix metalloproteinase expression by endothelial cells in collagen lattices changes during co-culture with fibroblasts and upon induction of decorin expression. J. Cell. Physiol. 187, 37–47 (2001)PubMedCrossRefGoogle Scholar
  28. 28.
    Strazynski, M., Eble, J.A., Kresse, H., Schönherr, E.: Interleukin (IL)-6 and IL-10 induce decorin mRNA in endothelial cells, but interaction with fibrillar collagen is essential for its translocation. J. Biol. Chem. 279, 21266–21270 (2004)PubMedCrossRefGoogle Scholar
  29. 29.
    Kainulainen, V., Nelimarkka, L., Järveläinen, H., Laato, M., Jalkanen, M., Elenius, K.: Suppression of syndecan-1 expression in endothelial cells by tumor necrosis factor-α. J. Biol. Chem. 271, 18759–18766 (1996)PubMedCrossRefGoogle Scholar
  30. 30.
    Obrig, T.O., Del Vecchio, P.J., Brown, J.E., Moran, T.P., Rowland, B.M., Judge, T.K., Rothman, S.W.: Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect. Immun. 56, 2373–2378 (1988)PubMedGoogle Scholar
  31. 31.
    Kaye, S.A., Louise, C.B., Boyd, B., Lingwood, C.A., Obrig, T.G.: Shiga toxin-associated hemolytic uremic syndrome: interleukin-1β enhancement of Shiga toxin cytotoxicity toward human vascular endothelial cells in vitro. Infect. Immun. 61, 3886–3891 (1993)PubMedGoogle Scholar
  32. 32.
    Gillard, B.K., Jones, M.A., Marcus, D.M.: Glycosphingolipids of human umbilical vein endothelial cells and smooth muscle cells. Arch. Biochem. Biophys. 256, 435–445 (1987)PubMedCrossRefGoogle Scholar
  33. 33.
    Müthing, J., Duvar, S., Heitmann, D., Hanisch, F.G., Neumann, U., Lochnit, G., Geyer, R., Peter-Katalinić, J.: Isolation and structural characterization of glycosphingolipids of in vitro propagated human umbilical vein endothelial cells. Glycobiology 9, 459–468 (1999)PubMedCrossRefGoogle Scholar
  34. 34.
    Kanda, T., Ariga, T., Kubodera, H., Jin, H.L., Owada, K., Kasama, T., Yamawaki, M., Mizusawa, H.: Glycosphingolipid composition of primary cultured human brain microvascular endothelial cells. J. Neurosci. Res. 78, 141–150 (2004)PubMedCrossRefGoogle Scholar
  35. 35.
    Van de Kar, N.C.A.J., Monnens, L.A.H., Karmali, M.A., van Hinsbergh, V.W.M.: Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. Blood 80, 2755–2764 (1992)PubMedGoogle Scholar
  36. 36.
    Ramegowda, B., Samuel, J.E., Tesh, V.L.: Interaction of Shiga toxins with human brain microvascular endothelial cells: cytokines as sensitizing agents. J. Infect. Dis. 180, 1205–1213 (1999)PubMedCrossRefGoogle Scholar
  37. 37.
    Eisenhauer, P.E., Chaturvedi, P., Fine, R.E., Ritchie, A.J., Pober, J.S., Cleary, T.G., Newburg, D.S.: Tumor necrosis factor alpha increases human cerebral endothelial cell Gb3 and sensitivity to Shiga toxin. Infect. Immun. 69, 1889–1894 (2001)PubMedCrossRefGoogle Scholar
  38. 38.
    Stricklett, P.K., Hughes, A.K., Ergonul, Z., Kohan, D.E.: Molecular basis for up-regulation by inflammatory cytokines of Shiga toxin 1 cytotoxicity and globotriaosylceramide expression. J. Infect. Dis. 186, 976–982 (2002)PubMedCrossRefGoogle Scholar
  39. 39.
    Ergonul, Z., Hughes, A.K., Kohan, D.E.: Induction of apoptosis of human brain microvascular endothelial cells by Shiga toxin. J. Infect. Dis. 187, 154–158 (2003)PubMedCrossRefGoogle Scholar
  40. 40.
    Duvar, S., Peter-Katalinić, J., Hanisch, F.G., Müthing, J.: Isolation and structural characterization of glycosphingolipids of in vitro propagated bovine aortic endothelial cells. Glycobiology 7, 1099–1109 (1997)PubMedCrossRefGoogle Scholar
  41. 41.
    Heidemann, R., Riese, U., Lütkemeyer, D., Büntemeyer, H., Lehmann, J.: The Super-Spinner: a low cost animal cell culture bioreactor for the CO2 incubator. Cytotechnology 14, 1–9 (1994)PubMedCrossRefGoogle Scholar
  42. 42.
    Meisen, I., Friedrich, A.W., Karch, H., Witting, U., Peter-Katalinić, J., Müthing, J.: Application of combined high-performance thin-layer chromatography immunostaining and nanoelectrospray ionisation quadrupole time-of-flight tandem mass spectrometry to the structural characterization of high- and low-affinity binding ligands of Shiga toxin 1. Rapid Commun. Mass Spectrom. 19, 3659–3665 (2005)PubMedCrossRefGoogle Scholar
  43. 43.
    Kasai, M., Iwamori, M., Nagai, Y., Okumura, K., Tada, T.: A glycolipid on the surface of mouse natural killer cells. Eur. J. Immunol. 10, 175–180 (1980)PubMedCrossRefGoogle Scholar
  44. 44.
    Müthing, J., Burg, M., Möckel, B., Langer, M., Metelmann-Strupat, W., Werner, A., Neumann, U., Peter-Katalinić, J., Eck, J.: Preferential binding of the anticancer drug rViscumin (recombinant mistletoe lectin) to terminally α2-6-sialylated neolacto-series gangliosides. Glycobiology 12, 485–497 (2002)PubMedCrossRefGoogle Scholar
  45. 45.
    Müthing, J., Meisen, I., Kniep, B., Haier, J., Senninger, N., Neumann, U., Langer, M., Witthohn, K., Milosević, J., Peter-Katalinić, J.: Tumor-associated CD75s gangliosides and CD75s-bearing glycoproteins with Neu5Acα2-6Galβ1-4GlcNAc residues are receptors for the anticancer drug rViscumin. FASEB J. 19, 103–105 (2005)PubMedGoogle Scholar
  46. 46.
    Steffensen, R., Carlier, K., Wiels, J., Levery, S.B., Stroud, M., Cedergren, B., Sojka, B.N., Bennett, E.P., Jersild, C., Clausen, H.: Cloning and expression of the histo-blood group Pk UDP-galactose: Galβ1-4Glcβ1-1Cer α1,4-galactosyltransferase. J. Biol. Chem. 275, 16723–16729 (2000)PubMedCrossRefGoogle Scholar
  47. 47.
    Müthing, J., Meisen, I., Bulau, P., Langer, M., Witthohn, K., Lentzen, H., Neumann, U., Peter-Katalinić, J.: Mistletoe lectin I is a sialic acid-specific lectin with strict preference to gangliosides and glycoproteins with terminal Neu5Acα2-6Galβ1-4GlcNAc residues. Biochemistry 43, 2996–3007 (2004)PubMedCrossRefGoogle Scholar
  48. 48.
    Müthing, J., Unland, F., Heitmann, D., Orlich, M., Hanisch, F.G., Peter-Katalinić, J., Knäuper, V., Tschesche, H., Kelm, S., Schauer, R., Lehmann, J.: Different binding capacities of influenza A and Sendai viruses to gangliosides from human granulocytes. Glycoconj. J. 10, 120–126 (1993)PubMedCrossRefGoogle Scholar
  49. 49.
    Müthing, J.: TLC in structure and recognition studies of glycosphingolipids. In: Hounsell, E.F. (ed.) Methods in Molecular Biology, pp. 183–195. Humana, Totawa, NJ (1998)Google Scholar
  50. 50.
    Meisen, I., Peter-Katalinić, J., Müthing, J.: Direct analysis of silica gel extracts from immunostained glycosphingolipids by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry. Anal. Chem. 76, 2248–2255 (2004)PubMedCrossRefGoogle Scholar
  51. 51.
    Meisen, I., Peter-Katalinić, J., Müthing, J.: Discrimination of neolacto-series gangliosides with α2-3- and α2-6-linked N-acetylneuraminic acid by nanoelectrospray ionization low-energy collision-induced dissociation tandem quadrupole TOF MS. Anal. Chem. 75, 5719–5725 (2003)PubMedCrossRefGoogle Scholar
  52. 52.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)CrossRefGoogle Scholar
  53. 53.
    Domon, B., Costello, C.E.: Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry 27, 1534–1543 (1988)PubMedCrossRefGoogle Scholar
  54. 54.
    Obrig, T.G., Louise, C.B., Lingwood, C.A., Boyd, B., Barley-Maloney, L., Daniel, T.O.: Endothelial heterogeneity in Shiga toxin receptors and responses. J. Biol. Chem. 268, 15484–15488 (1993)PubMedGoogle Scholar
  55. 55.
    Ohmi, K., Kiyokawa, N., Takeda, T., Fujimoto, J.: Human microvascular endothelial cells are strongly sensitive to Shiga toxins. Biochem. Biophys. Res. Commun. 251, 137–141 (1998)PubMedCrossRefGoogle Scholar
  56. 56.
    Jacewicz, M., Acheson, D.W.K., Binion, D.G., West, G.A., Lincicome, L.L., Fiocchi, C., Keusch, G.T.: Responses of human intestinal microvascular endothelial cells to Shiga toxins 1 and 2 and pathogenesis of hemorrhagic colitis. Infect. Immun. 67, 1439–1444 (1999)PubMedGoogle Scholar
  57. 57.
    Rösner, H., Greis, Ch., Rodemann, H.P.: Density-dependent expression of ganglioside GM3 by human skin fibroblasts in an all-or-none fashion, as a possible modulator of cell growth in vitro. Exp. Cell Res. 190, 161–169 (1990)PubMedCrossRefGoogle Scholar
  58. 58.
    Boyd, B., Magnusson, G., Zhiuyan, Z., Lingwood, C.A.: Lipid modulation of glycolipid receptor function. Eur. J. Biochem. 223, 873–878 (1994)PubMedCrossRefGoogle Scholar
  59. 59.
    Kiarash, A., Boyd, B., Lingwood, C.A.: Glycosphingolipid receptor function is modified by fatty acid content. J. Biol. Chem. 269, 11138–11146 (1994)PubMedGoogle Scholar
  60. 60.
    Binnington, B., Lingwood, D., Nutikka, A., Lingwood, C.A.: Effect of globotriaosylceramide fatty acid α-hydroxylation on the binding by verotoxin 1 and verotoxin 2. Neurochem. Res. 27, 807–813 (2002)PubMedCrossRefGoogle Scholar
  61. 61.
    Sandvig, K., Ryd, M., Garred, Ø., Schweda, E., Holm, P.K., van Deurs, B.: Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP. J. Cell Biol. 126, 53–64 (1994)PubMedCrossRefGoogle Scholar
  62. 62.
    Sekino, T., Kiyokawa, N., Taguchi, T., Takenouchi, H., Matsui, J., Tang, W.R., Suzuki, T., Nakajima, H., Saito, M., Ohmi, K., Katagiri, Y.U., Okita, H., Nakao, H., Takeda, T., Fujimoto, J.: Characterization of a Shiga-toxin 1-resistant stock of Vero cells. Microbiol. Immunol. 48, 377–387 (2004)PubMedGoogle Scholar
  63. 63.
    Hakomori, S.I.: Cell adhesion/recognition and signal transduction through glycosphingolipid microdomain. Glycoconj. J. 17, 143–151 (2000)PubMedCrossRefGoogle Scholar
  64. 64.
    Sonnino, S., Prinetti, A., Mauri, L., Chigorno, V., Tettamanti, G.: Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem. Rev. 106, 2111–2125 (2006)PubMedCrossRefGoogle Scholar
  65. 65.
    Fantini, J., Maresca, M., Hammache, D., Yahi, N., Delézay, O.: Glycosphingolipid (GSL) microdomains as attachment platforms for host pathogens and their toxins on intestinal epithelial cells: activation of signal transduction pathways and perturbations of intestinal absorption and secretion. Glycoconj. J. 17, 173–179 (2000)PubMedCrossRefGoogle Scholar
  66. 66.
    Lencer, W.I., Saslowsky, D.: Raft trafficking of AB5 subunit bacterial toxins. Biochim. Biophys. Acta 1746, 314–321 (2005)PubMedCrossRefGoogle Scholar
  67. 67.
    Falguières, T., Mallard, F., Baron, C., Hanau, D., Lingwood, C., Goud, B., Salamero, J., Johannes, L.: Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol. Biol. Cell 12, 2453–2468 (2001)PubMedGoogle Scholar
  68. 68.
    Smith, D.C., Sillence, D.J., Falguières, T., Jarvis, R.M., Johannes, L., Lord, J.M., Platt, F.M., Roberts, L.M.: The association of Shiga-like toxin with detergent-resistant membranes is modulated by glucosylceramide and is an essential requirement in the endoplasmic reticulum for a cytotoxic effect. Mol. Biol. Cell 17, 1375–1387 (2006)PubMedCrossRefGoogle Scholar
  69. 69.
    Falguières, T., Römer, W., Amessou, M., Afonso, C., Wolf, C., Tabet, J.C., Lamaze, C., Johannes, L.: Functionally different pools of Shiga toxin receptor, globotriaosyl ceramide, in HeLa cells. FEBS J. 273, 5205–5218 (2006)PubMedCrossRefGoogle Scholar
  70. 70.
    Tarr, P.I., Gordon, C.A., Chandler, W.L.: Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet 365, 1073–1086 (2005)PubMedGoogle Scholar
  71. 71.
    Karmali, M.A.: Prospects for preventing serious systemic toxemic complications of Shiga toxin producing Escherichia coli infections using Shiga toxin receptor analogues. J. Infect. Dis. 189, 355–359 (2004)PubMedCrossRefGoogle Scholar
  72. 72.
    Müthing, J., Čačić, M.: Glycosphingolipid expression in human skeletal and heart muscle assessed by immunostaining thin-layer chromatography. Glycoconj. J. 14, 19–28 (1997)PubMedCrossRefGoogle Scholar
  73. 73.
    Bethke, U., Müthing, J., Schauder, B., Conradt, P., Mühlradt, P.F.: An improved semi-quantitative enzyme immunostaining procedure for glycosphingolipid antigens on high performance thin layer chromatograms. J. Immunol. Methods 89, 111–116 (1986)PubMedCrossRefGoogle Scholar
  74. 74.
    Markotić, A., Čulić, V., Kurir, T., Meisen, I., Büntemeyer, H., Boraska, V., Zemunik, T., Petri, N., Mesarić, M., Peter-Katalinić, J., Müthing, J.: Oxygenation alters ganglioside expression in rat liver following partial hepatectomy. Biochem. Biophys. Res. Commun. 330, 131–141 (2005)PubMedCrossRefGoogle Scholar
  75. 75.
    Chester, M.A.: IUPAC-IUB Joint Commission on Biochemical Nomenclature. Nomenclature of glycolipids. Recommendations 1997. Glycoconj. J. 16, 1–6 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Christian H. Schweppe
    • 1
    • 2
  • Martina Bielaszewska
    • 1
  • Gottfried Pohlentz
    • 3
  • Alexander W. Friedrich
    • 1
    • 2
  • Heino Büntemeyer
    • 4
  • M. Alexander Schmidt
    • 5
  • Kwang S. Kim
    • 6
  • Jasna Peter-Katalinić
    • 3
  • Helge Karch
    • 1
    • 2
  • Johannes Müthing
    • 3
  1. 1.Institute for HygieneUniversity of MünsterMünsterGermany
  2. 2.Interdisciplinary Center for Clinical Research (IZKF) MünsterMünsterGermany
  3. 3.Institute for Medical Physics and BiophysicsUniversity of MünsterMünsterGermany
  4. 4.Institute for Cell Culture TechnologyUniversity of BielefeldBielefeldGermany
  5. 5.Institute of InfectiologyUniversity of MünsterMünsterGermany
  6. 6.Division of Pediatric Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations