Glycoconjugate Journal

, 25:503 | Cite as

“Fluorescent glycogen” formation with sensibility for in vivo and in vitro detection

  • M. Carmen Louzao
  • Begoña Espiña
  • Mercedes R. Vieytes
  • Felix V. Vega
  • Juan A. Rubiolo
  • Otto Baba
  • Tatsuo Terashima
  • Luis M. Botana


There are presently many methods of detecting complex carbohydrates, and particularly glycogen. However most of them require radioisotopes or destruction of the tissue and hydrolysis of glycogen to glucose. Here we present a new method based on the incorporation of 2-NBDG (2-{N-[7-nitrobenz-2-oxa-1, 3-diazol 4-yl] amino}-2-deoxyglucose), a d-glucose fluorescent derivative, into glycogen. Two kinds of approaches were carried out by using Clone 9 rat hepatocytes as a cellular model; (1) Incubation of cell lysates with 2-NBDG, carbohydrate precipitation in filters and measurement of fluorescence in a microplate reader (2) Incubation of living hepatocytes with 2-NBDG and recording of fluorescence images by confocal microscopy. 2-NBDG labeled glycogen in both approaches. We confirmed this fact by comparison to the labeling obtained with a specific monoclonal anti-glycogen antibody. Also drugs that trigger glycogen synthesis or degradation induced an increase or decrease of fluorescence, respectively. This is a simple but efficient method of detecting glycogen with 2-NBDG. It could be used to record changes in glycogen stores in living cells and cell-free systems and opens the prospect of understanding the role of this important energy reserve under various physiological and pathophysiological conditions.


Glycogen 2-NBDG Cell free system TRITC (tetramethylrhodamine isothiocyanate)-conjugated goat anti-mouse IgM Anti-glycogen antibody 



This work was funded with grants from the following agencies:

Ministerio de Ciencia y Tecnología, Spain; Grant Number: SAF2003-08765-C03-02, REN2001-2959-C04-03, REN2003-06598-C02-01, AGL2004-08268-02-O2/ALI. Xunta de Galicia, Spain; Grant Number: PGIDT99INN26101, PGIDIT03AL26101PR and PGIDIT04TAL261005PR.

Fondo de Investigaciones Sanitarias, Spain; Grant Number: FISS REMA-G03-007. EU VIth Frame Program; Grant Number: IP FOOD-CT-2004-06988 (BIOCOP) and STREP FOOD-CT-2004-514055 (DETECTOX), CRP 030270-2 (SPIES-DETOX).


  1. 1.
    Agbanyo, M., Taylor, N.F.: Incorporation of 3-deoxy-3-fluoro-D-glucose into glycogen and trehalose in fat body and flight muscle in Locusta migratoria. Biosci. Rep. 6, 309–316 (1986)PubMedCrossRefGoogle Scholar
  2. 2.
    Ainscow, E.K., Brand, M.D.: The responses of rat hepatocytes to glucagon and adrenaline. Application of quantified elasticity analysis. Eur. J. Biochem 265, 1043–1055 (1999)PubMedCrossRefGoogle Scholar
  3. 3.
    Aiston, S., Coghlan, M.P., Agius, L.: Inactivation of phosphorylase is a major component of the mechanism by which insulin stimulates hepatic glycogen synthesis. Eur. J. Biochem. 270, 2773–2781 (2003)PubMedCrossRefGoogle Scholar
  4. 4.
    Baba, O.: Production of monoclonal antibody that recognizes glycogen and its application for immunohistochemistry. Kokubyo Gakkai Zasshi 60, 264–287 (1993)PubMedGoogle Scholar
  5. 5.
    Bollen, M., Keppens, S., Stalmans, W.: Specific features of glycogen metabolism in the liver. Biochem. J. 336, (Pt 1), 19–31 (1998)PubMedGoogle Scholar
  6. 6.
    Carr, R.S., Neff, J.M.: Quantitative semi-automated enzymatic assay for tissue glycogen. Comp. Biochem. Physiol. B. 77, 447–449 (1984)PubMedCrossRefGoogle Scholar
  7. 7.
    Colwell, D.R., Higgins, J.A., Denyer, G.S.: Incorporation of 2-deoxy-D-glucose into glycogen. Implications for measurement of tissue-specific glucose uptake and utilization. Int. J. Biochem. Cell Biol. 28, 115–121 (1996)PubMedCrossRefGoogle Scholar
  8. 8.
    Fedders, G., Kock, R., Van de Leur, E., Greiling, H.: The metabolism of 2-fluoro-2-deoxy-D-glucose in human chondrocytes and its incorporation into keratan sulfate proteoglycans. Eur. J. Biochem. 219, 1063–1071 (1994)PubMedCrossRefGoogle Scholar
  9. 9.
    Fernandez-Novell, J.M., Bellido, D., Vilaro, S., Guinovart, J.J.: Glucose induces the translocation of glycogen synthase to the cell cortex in rat hepatocytes. Biochem. J. 321, (Pt 1), 227–31 (1997)PubMedGoogle Scholar
  10. 10.
    Fernandez-Novell, J.M., Lopez-Iglesias, C., Ferrer, J.C., Guinovart, J.J.: Zonal distribution of glycogen synthesis in isolated rat hepatocytes. FEBS Lett. 531, 222–228 (2002)PubMedCrossRefGoogle Scholar
  11. 11.
    Garcia-Rocha, M., Roca, A., De La Iglesia, N., Baba, O., Fernandez-Novell, J.M., Ferrer, J.C., Guinovart, J.J.: Intracellular distribution of glycogen synthase and glycogen in primary cultured rat hepatocytes. Biochem. J. 357, 17–24 (2001)PubMedCrossRefGoogle Scholar
  12. 12.
    Gaudreault, N., Scriven, D.R., Laher, I., Moore, E.D.: Subcellular characterization of glucose uptake in coronary endothelial cells. Microvasc. Res. (2007, in press) DOI  10.1016/j.mvr.2007.04.006
  13. 13.
    Graf, R., Klessen, C.: Glycogen in pancreatic islets of steroid diabetic rats. Carbohydrate histochemical detection and localization using an immunocytochemical technique. Histochemistry 73, 225–232 (1981)PubMedCrossRefGoogle Scholar
  14. 14.
    Grau, M., Soley, M., Ramirez, I. : Interaction between adrenaline and epidermal growth factor in the control of liver glycogenolysis in mouse. Endocrinology 138, 2601–2609 (1997)PubMedCrossRefGoogle Scholar
  15. 15.
    Greenberg, C.C., Meredith, K.N., Yan, L., Brady, M.J.: Protein targeting to glycogen overexpression results in the specific enhancement of glycogen storage in 3T3-L1 adipocytes. J. Biol. Chem. 278, 30835–30842 (2003)PubMedCrossRefGoogle Scholar
  16. 16.
    Hudson, E.R., Pan, D.A., James, J., Lucocq, J.M., Hawley, S.A., Green, K.A., Baba, O., Terashima, T., Hardie, D.G.: A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr. Biol. 13, 861–866 (2003)PubMedCrossRefGoogle Scholar
  17. 17.
    Leira, F., Louzao, M.C., Vieites, J.M., Botana, L.M., Vieytes, M.R.: Fluorescent microplate cell assay to measure uptake and metabolism of glucose in normal human lung fibroblasts. Toxicol. In Vitro 16, 267–273 (2002)PubMedCrossRefGoogle Scholar
  18. 18.
    Lloyd, P.G., Hardin, C.D., Sturek, M.: Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog. Physiol. Res. 48, 401–410 (1999)PubMedGoogle Scholar
  19. 19.
    Loaiza, A., Porras, O.H., Barros, L.F.: Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J. Neurosci. 23, 7337–7342 (2003)PubMedGoogle Scholar
  20. 20.
    Louzao, M.C., Vieytes, M.R., Botana, L.M.: Effect of okadaic acid on glucose regulation. Mini. Rev. Med. Chem. 5, 207–215 (2005)PubMedGoogle Scholar
  21. 21.
    Louzao, M.C., Vieytes, M.R., Fontal, O., Botana, L.M.: Glucose uptake in enterocytes: a test for molecular targets of okadaic acid. J. Recept. Signal Transduct. Res 23, 211–224 (2003)PubMedCrossRefGoogle Scholar
  22. 22.
    McManus, J.F.A.: Histological and histochemical uses of periodic acid. Stain Technol. 23, 99–108 (1948)PubMedGoogle Scholar
  23. 23.
    Morgan, N.G., Blackmore, P.F., Exton, J.H.: Age-related changes in the control of hepatic cyclic AMP levels by alpha 1- and beta 2-adrenergic receptors in male rats. J. Biol. Chem 258, 5103–5109 (1983)PubMedGoogle Scholar
  24. 24.
    Morgan, N.G., Shuman, E.A., Exton, J.H., Blackmore, P.F.: Stimulation of hepatic glycogenolysis by alpha 1- and beta 2-adrenergic agonists. Evidence against short term agonist-induced desensitization of the responses. J. Biol. Chem. 257, 13907–13910 (1982)PubMedGoogle Scholar
  25. 25.
    Natarajan, A., Srienc, F.: Dynamics of glucose uptake by single Escherichia coli cells. Metab. Eng. 1, 320–333 (1999)PubMedCrossRefGoogle Scholar
  26. 26.
    O’Neil, R.G., Wu, L., Mullani, N.: Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol. Imag. Biol. 7, 388–392 (2005)CrossRefGoogle Scholar
  27. 27.
    Roman, Y., Alfonso, A., Louzao, M.C., Vieytes, M.R., Botana, L.M.: Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone. Pflugers. Arch. 443, 234–239 (2001)PubMedCrossRefGoogle Scholar
  28. 28.
    Schaart, G., Hesselink, R.P., Keizer, H.A., van Kranenburg, G., Drost, M.R., Hesselink, M.K.: A modified PAS stain combined with immunofluorescence for quantitative analyses of glycogen in muscle sections. Histochem. Cell Biol. 122, 161–169 (2004)PubMedCrossRefGoogle Scholar
  29. 29.
    Virkamaki, A., Rissanen, E., Hamalainen, S., Utriainen, T., Yki-Jarvinen, H.: Incorporation of [3-3H]glucose and 2-[1-14C]deoxyglucose into glycogen in heart and skeletal muscle in vivo: implications for the quantitation of tissue glucose uptake. Diabetes 46, 1106–1110 (1997)PubMedCrossRefGoogle Scholar
  30. 30.
    Wood, I.S., Trayhurn, P.: Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 89, 3–9 (2003)PubMedCrossRefGoogle Scholar
  31. 31.
    Yamada, K., Nakata, M., Horimoto, N., Saito, M., Matsuoka, H., Inagaki, N.: Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic beta-cells. J. Biol. Chem. 275, 22278–22283 (2000)PubMedCrossRefGoogle Scholar
  32. 32.
    Yoshioka, K., Oh, K.B., Saito, M., Nemoto, Y., Matsuoka, H.: Evaluation of 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-D-glucose, a new fluorescent derivative of glucose, for viability assessment of yeast Candida albicans. Appl. Microbiol. Biotechnol. 46, 400–404 (1996)PubMedGoogle Scholar
  33. 33.
    Yoshioka, K., Saito, M., Oh, K.B., Nemoto, Y., Matsuoka, H., Natsume, M., Abe, H.: Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Biosci. Biotechnol. Biochem. 60, 1899–1901 (1996)PubMedCrossRefGoogle Scholar
  34. 34.
    Yoshioka, K., Takahashi, H., Homma, T., Saito, M., Oh, K.B., Nemoto, Y., Matsuoka, H.: A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim. Biophys. Acta 1289, 5–9 (1996)PubMedGoogle Scholar
  35. 35.
    Zou, C., Wang, Y., Shen, Z.: 2-NBDG as a fluorescent indicator for direct glucose uptake measurement. J. Biochem. Biophys. Methods 64, 207–215 (2005)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Carmen Louzao
    • 1
  • Begoña Espiña
    • 1
  • Mercedes R. Vieytes
    • 2
  • Felix V. Vega
    • 2
  • Juan A. Rubiolo
    • 2
  • Otto Baba
    • 3
  • Tatsuo Terashima
    • 3
  • Luis M. Botana
    • 1
  1. 1.Departamento de Farmacologia, Facultad de Veterinaria de LugoUniversidad de Santiago de CompostelaLugoSpain
  2. 2.Departamento de Fisiologia Animal, Facultad de Veterinaria de LugoUniversidad de Santiago de CompostelaLugoSpain
  3. 3.Biostructural ScienceTokyo Medical & Dental UniversityBunkyo-kuJapan

Personalised recommendations