Glycoconjugate Journal

, Volume 25, Issue 2, pp 167–175

Distinct contributions of β4GalNAcTA and β4GalNAcTB to Drosophila glycosphingolipid biosynthesis

  • Anita Stolz
  • Nicola Haines
  • Andreas Pich
  • Kenneth D. Irvine
  • Cornelis H. Hokke
  • André M. Deelder
  • Rita Gerardy-Schahn
  • Manfred Wuhrer
  • Hans Bakker
Article

Abstract

Drosophila melanogaster has two β4-N-acetylgalactosaminyltransferases, β4GalNAcTA and β4GalNAcTB, that are able to catalyse the formation of lacdiNAc (GalNAcβ,4GlcNAc). LacdiNAc is found as a structural element of Drosophila glycosphingolipids (GSLs) suggesting that β4GalNAcTs contribute to the generation of GSL structures in vivo. Mutations in Egghead and Brainaic, enzymes that generate the β4GalNAcT trisaccharide acceptor structure GlcNAcβ,3Manβ,4GlcβCer, are lethal. In contrast, flies doubly mutant for the β4GalNAcTs are viable and fertile. Here, we describe the structural analysis of the GSLs in β4GalNAcT mutants and find that in double mutant flies no lacdiNAc structure is generated and the trisaccharide GlcNAcβ,3Manβ,4GlcβCer accumulates. We also find that phosphoethanolamine transfer to GlcNAc in the trisaccharide does not occur, demonstrating that this step is dependent on prior or simultaneous transfer of GalNAc. By comparing GSL structures generated in the β4GalNAcT single mutants we show that β4GalNAcTB is the major enzyme for the overall GSL biosynthesis in adult flies. In β4GalNAcTA mutants, composition of GSL structures is indistinguishable from wild-type animals. However, in β4GalNAcTB mutants precursor structures are accumulating in different steps of GSL biosynthesis, without the complete loss of lacdiNAc, indicating that β4GalNAcTA plays a minor role in generating GSL structures. Together our results demonstrate that both β4GalNAcTs are able to generate lacdiNAc structures in Drosophila GSL, although with different contributions in vivo, and that the trisaccharide GlcNAcβ,3Manβ,4GlcβCer is sufficient to avoid the major phenotypic consequences associated with the GSL biosynthetic defects in Brainiac or Egghead.

Keywords

Drosophila glycosphingolipid lacdiNAc Brainiac Egghead Glycosyltransferase 

References

  1. 1.
    Haines, N., Irvine, K.D.: Functional analysis of Drosophila beta1,4-N-acetlygalactosaminyltransferases. Glycobiology 15, 335–346 (2005)PubMedCrossRefGoogle Scholar
  2. 2.
    Guo, S., Sato, T., Shirane, K., Furukawa, K.: Galactosylation of N-linked oligosaccharides by human beta-1,4-galactosyltransferases I, II, III, IV, V, and VI expressed in Sf-9 cells. Glycobiology 11, 813–820 (2001)PubMedCrossRefGoogle Scholar
  3. 3.
    Ito, H., Kameyama, A., Sato, T., Sukegawa, M., Ishida, H.K., Narimatsu, H.: Strategy for the fine characterization of glycosyltransferase specificity using isotopomer assembly. Nat. Methods 4, 577–582 (2007)PubMedCrossRefGoogle Scholar
  4. 4.
    Almeida, R., Levery, S.B., Mandel, U., Kresse, H., Schwientek, T., Bennett, E.P., Clausen, H.: Cloning and expression of a proteoglycan UDP-galactose:beta-xylose beta1,4-galactosyltransferase I. A seventh member of the human beta4-galactosyltransferase gene family. J. Biol. Chem. 274, 26165–26171 (1999)PubMedCrossRefGoogle Scholar
  5. 5.
    Nakamura, Y., Haines, N., Chen, J., Okajima, T., Furukawa, K., Urano, T., Stanley, P., Irvine, K.D., Furukawa, K.: Identification of a Drosophila gene encoding xylosylprotein beta4-galactosyltransferase that is essential for the synthesis of glycosaminoglycans and for morphogenesis. J. Biol. Chem. 277, 46280–46288 (2002)PubMedCrossRefGoogle Scholar
  6. 6.
    Vadaie, N., Hulinsky, R.S., Jarvis, D.L.: Identification and characterization of a Drosophila melanogaster ortholog of human beta1,4-galactosyltransferase VII. Glycobiology 12, 589–597 (2002)PubMedCrossRefGoogle Scholar
  7. 7.
    Sasaki, N., Yoshida, H., Fuwa, T.J., Kinoshita-Toyoda, A., Toyoda, H., Hirabayashi, Y., Ishida, H., Ueda, R., Nishihara, S.: Drosophila beta 1,4-N-acetylgalactosaminyltransferase-A synthesizes the LacdiNAc structures on several glycoproteins and glycosphingolipids. Biochem. Biophys. Res. Commun. 354, 522–527 (2007)PubMedCrossRefGoogle Scholar
  8. 8.
    Stolz, A., Kraft, B., Wuhrer, M., Hokke, C.H., Gerardy-Schahn, R., Bakker, H.: A DHHC protein regulates activity and subcellular transport of GalNAc transferase B in Drosophila melanogaster. Glycobiology 16, 1107 (2006)Google Scholar
  9. 9.
    Smith, P.L., Baenziger, J.U.: A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones. Science 242, 930–933 (1988)PubMedCrossRefGoogle Scholar
  10. 10.
    Gotoh, M., Sato, T., Kiyohara, K., Kameyama, A., Kikuchi, N., Kwon, Y.D., Ishizuka, Y., Iwai, T., Nakanishi, H., Narimatsu, H.: Molecular cloning and characterization of beta1,4-N-acetylgalactosaminyltransferases IV synthesizing N,N′-diacetyllactosediamine. FEBS Lett. 562, 134–140 (2004)PubMedCrossRefGoogle Scholar
  11. 11.
    Sato, T., Gotoh, M., Kiyohara, K., Kameyama, A., Kubota, T., Kikuchi, N., Ishizuka, Y., Iwasaki, H., Togayachi, A., Kudo, T., Ohkura, T., Nakanishi, H., Narimatsu, H.: Molecular cloning and characterization of a novel human beta 1,4-N-acetylgalactosaminyltransferase, beta 4GalNAc-T3, responsible for the synthesis of N,N′-diacetyllactosediamine, GalNAc beta 1–4GlcNAc. J. Biol. Chem. 278, 47534–47544 (2003)PubMedCrossRefGoogle Scholar
  12. 12.
    van den Eijnden, D.H., Neeleman, A.P., Van der Knaap, W.P., Bakker, H., Agterberg, M., van Die, I.: Novel glycosylation routes for glycoproteins: the lacdiNAc pathway. Biochem. Soc. Trans. 23, 175–179 (1995)PubMedGoogle Scholar
  13. 13.
    Cipollo, J.F., Awad, A.M., Costello, C.E., Hirschberg, C.B.: N-Glycans of Caenorhabditis elegans are specific to developmental stages. J. Biol. Chem. 280, 26063–26072 (2005)PubMedCrossRefGoogle Scholar
  14. 14.
    Gerdt, S., Lochnit, G., Dennis, R.D., Geyer, R.: Isolation and structural analysis of three neutral glycosphingolipids from a mixed population of Caenorhabditis elegans (Nematoda:Rhabditida). Glycobiology 7, 265–275 (1997)PubMedCrossRefGoogle Scholar
  15. 15.
    Kawar, Z.S., van Die, I., Cummings, R.D.: Molecular cloning and enzymatic characterization of a UDP-GalNAc:GlcNAc(beta)-R beta1,4-N-acetylgalactosaminyltransferase from Caenorhabditis elegans. J. Biol. Chem. 277, 34924–34932 (2002)PubMedCrossRefGoogle Scholar
  16. 16.
    Kubelka, V., Altmann, F., Staudacher, E., Tretter, V., März, L., Hård, K., Kamerling, J.P., Vliegenthart, J.F.: Primary structures of the N-linked carbohydrate chains from honeybee venom phospholipase A2. Eur. J. Biochem. 213, 1193–1204 (1993)PubMedCrossRefGoogle Scholar
  17. 17.
    Park, Y.I., Wood, H.A., Lee, Y.C.: Monosaccharide compositions of Danaus plexippus (monarch butterfly) and Trichoplusia ni (cabbage looper) egg glycoproteins. Glycoconj. J. 16, 629–638 (1999)PubMedCrossRefGoogle Scholar
  18. 18.
    Vadaie, N., Jarvis, D.L.: Molecular cloning and functional characterization of a Lepidopteran insect beta4-N-acetylgalactosaminyltransferase with broad substrate specificity, a functional role in glycoprotein biosynthesis, and a potential functional role in glycolipid biosynthesis. J. Biol. Chem. 279, 33501–33518 (2004)PubMedCrossRefGoogle Scholar
  19. 19.
    van Die, I., van Tetering, A., Bakker, H., van den Eijnden, D.H., Joziasse, D.H.: Glycosylation in lepidopteran insect cells: identification of a beta 1–>4-N-acetylgalactosaminyltransferase involved in the synthesis of complex-type oligosaccharide chains. Glycobiology 6, 157–164 (1996)PubMedCrossRefGoogle Scholar
  20. 20.
    North, S.J., Koles, K., Hembd, C., Morris, H.R., Dell, A., Panin, V.M., Haslam, S.M.: Glycomic studies of Drosophila melanogaster embryos. Glycoconj. J. 23, 345–354 (2006)PubMedCrossRefGoogle Scholar
  21. 21.
    Seppo, A., Moreland, M., Schweingruber, H., Tiemeyer, M.: Zwitterionic and acidic glycosphingolipids of the Drosophila melanogaster embryo. Eur. J. Biochem. 267, 3549–3558 (2000)PubMedCrossRefGoogle Scholar
  22. 22.
    Wiegandt, H.: Insect glycolipids. Biochim. Biophys. Acta 1123, 117–126 (1992)PubMedGoogle Scholar
  23. 23.
    Sugita, M., Iwasaki, Y., Hori, T.: Studies on glycosphingolipids of larvae of the green-bottle fly, Lucilia caesar. II. Isolation and structural studies of three glycosphingolipids with novel sugar sequences. J. Biochem. (Tokyo) 92, 881–887 (1982)Google Scholar
  24. 24.
    Schwientek, T., Keck, B., Levery, S.B., Jensen, M.A., Pedersen, J.W., Wandall, H.H., Stroud, M., Cohen, S.M., Amado, M., Clausen, H.: The Drosophila gene brainiac encodes a glycosyltransferase putatively involved in glycosphingolipid synthesis. J. Biol. Chem. 277, 32421–32429 (2002)PubMedCrossRefGoogle Scholar
  25. 25.
    Wandall, H.H., Pedersen, J.W., Park, C., Levery, S.B., Pizette, S., Cohen, S.M., Schwientek, T., Clausen, H.: Drosophila egghead encodes a beta 1,4-mannosyltransferase predicted to form the immediate precursor glycosphingolipid substrate for brainiac. J. Biol. Chem. 278, 1411–1414 (2003)PubMedCrossRefGoogle Scholar
  26. 26.
    Müller, R., Altmann, F., Zhou, D., Hennet, T.: The Drosophila melanogaster brainiac protein is a glycolipid-specific beta 1,3N-acetylglucosaminyltransferase. J. Biol. Chem. 277, 32417–32420 (2002)PubMedCrossRefGoogle Scholar
  27. 27.
    Wandall, H.H., Pizette, S., Pedersen, J.W., Eichert, H., Levery, S.B., Mandel, U., Cohen, S.M., Clausen, H.: Egghead and brainiac are essential for glycosphingolipid biosynthesis in vivo. J. Biol. Chem. 280, 4858–4863 (2005)PubMedCrossRefGoogle Scholar
  28. 28.
    Good, S., Wright, D., Mahowald, A.P.: The neurogenic locus brainiac cooperates with the Drosophila EGF receptor to establish the ovarian follicle and to determine its dorsal–ventral polarity. Development 116, 177–192 (1992)PubMedGoogle Scholar
  29. 29.
    Goode, S., Melnick, M., Chou, T.B., Perrimon, N.: The neurogenic genes egghead and brainiac define a novel signaling pathway essential for epithelial morphogenesis during Drosophila oogenesis. Development 122, 3863–3879 (1996)PubMedGoogle Scholar
  30. 30.
    Chen, Y.W., Pedersen, J.W., Wandall, H.H., Levery, S.B., Pizette, S., Clausen, H., Cohen, S.M.: Glycosphingolipids with extended sugar chain have specialized functions in development and behavior of Drosophila. Dev. Biol. 306, 736–749 (2007)PubMedCrossRefGoogle Scholar
  31. 31.
    Haines, N., Stewart, B.A.: Functional roles for beta1,4-N-acetlygalactosaminyltransferase-A in Drosophila larval neurons and muscles. Genetics 175, 671–679 (2007)PubMedCrossRefGoogle Scholar
  32. 32.
    Folch, J., Lees, M., Sloane-Stanley, G.H.: A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957)PubMedGoogle Scholar
  33. 33.
    Williams, M.A., McCluer, R.H.: The use of Sep-Pak C18 cartridges during the isolation of gangliosides. J. Neurochem. 35, 266–269 (1980)PubMedCrossRefGoogle Scholar
  34. 34.
    Wuhrer, M., Deelder, A.M.: Negative-mode MALDI-TOF/TOF-MS of oligosaccharides labeled with 2-aminobenzamide. Anal. Chem. 77, 6954–6959 (2005)PubMedCrossRefGoogle Scholar
  35. 35.
    Domon, B., Costello, C.E.: A systematic nomenclature for carbohydrate fragmentations in Fab-Ms Ms spectra of glycoconjugates. Glycoconj. J. 5, 397–409 (1988)CrossRefGoogle Scholar
  36. 36.
    Griffitts, J.S., Haslam, S.M., Yang, T., Garczynski, S.F., Mulloy, B., Morris, H., Cremer, P.S., Dell, A., Adang, M.J., Aroian, R.V.: Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307, 922–925 (2005)PubMedCrossRefGoogle Scholar
  37. 37.
    Müller, R., Hülsmeier, A.J., Altmann, F., Ten Hagen, K., Tiemeyer, M., Hennet, T.: Characterization of mucin-type core-1 beta1-3 galactosyltransferase homologous enzymes in Drosophila melanogaster. FEBS J. 272, 4295–4305 (2005)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Anita Stolz
    • 1
  • Nicola Haines
    • 2
  • Andreas Pich
    • 3
  • Kenneth D. Irvine
    • 4
  • Cornelis H. Hokke
    • 5
  • André M. Deelder
    • 5
  • Rita Gerardy-Schahn
    • 1
  • Manfred Wuhrer
    • 5
  • Hans Bakker
    • 1
  1. 1.Zelluläre Chemie, Zentrum BiochemieMedizinische Hochschule HannoverHannoverGermany
  2. 2.Department of BiologyUniversity of TorontoMississaugaCanada
  3. 3.Institute of ToxicologyMedizinische Hochschule HannoverHannoverGermany
  4. 4.Howard Hughes Medical Institute and Department of Molecular Biology and Biochemistry, RutgersThe State University of New JerseyPiscatawayUSA
  5. 5.Department of Parasitology, Center of Infectious DiseasesLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations