Glycoconjugate Journal

, Volume 24, Issue 9, pp 583–590 | Cite as

Binding kinetics of influenza viruses to sialic acid-containing carbohydrates

  • Kazuya I. P. J. Hidari
  • Shizumi Shimada
  • Yasuo Suzuki
  • Takashi Suzuki


To elucidate the molecular mechanisms of transmission of influenza viruses between different host species, such as human and birds, binding properties of sialic acid-containing carbohydrates that are recognized by human and/or avian influenza viruses were characterized by the surface plasmon resonance (SPR) method. Differences in the binding of influenza viruses to three gangliosides were monitored in real-time and correlated with receptor specificity between avian and human viruses. SPR analysis with ganglioside-containing lipid bilayers demonstrated the recognition profile of influenza viruses to not only sialic acid linkages, but also core carbohydrate structures on the basis of equilibrated rate constants. Kinetic analysis showed different binding preferences to gangliosides between avian and human strains. An avian strain bound to Neu5Acα2-3nLc4Cer with much slower dissociation rate than its sialyl-linkage analog, Neu5Acα2-6nLc4Cer, on the lipid bilayer. In contrast, a human strain bound equally to both gangliosides. An avian strain, but not a human strain, also interacted with GM3 carrying a shorter carbohydrate chain. Our findings demonstrated the remarkable distinction in the binding kinetics of sialic acid-containing carbohydrates between avian and human influenza viruses on the lipid bilayer.


Avian influenza virus Sialic acid linkage Lipid bilayer Association rate constant Dissociation rate constant Surface plasmon resonance 



surface plasmon resonance


resonance unit







We thank Rieko Mizuno and Masami Okumura for technical assistance. This work was supported by grants-in-aid for Scientific Research on Priority Areas (18570135) and grants-in-aid for Kurozumi Medical Foundation.


Glycolipids and carbohydrates are abbreviated according to the recommendations of the IUPAC-IUB Commission on Biochemical Nomenclature (Lipids (1977) 12:455–468). Gangliosides are abbreviated according to Svennerholm (J. Lipid Res. (1964) 5:145–155).


  1. 1.
    Fishman, P.H., Pacuszka, T., Orlandi, P.A.: Gangliosides as receptors for bacterial enterotoxins. Adv. Lipid Res. 25, 165–187 (1993)PubMedGoogle Scholar
  2. 2.
    Suzuki, Y.: Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol. Pharm. Bull. 28, 399–408 (2005)PubMedCrossRefGoogle Scholar
  3. 3.
    Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., Kawaoka, Y.: Evolution and ecology of influenza A viruses. Microbiol. Rev. 56, 152–179 (1992)PubMedGoogle Scholar
  4. 4.
    Wright, P.F., Webster, R.G.: Field Virology, 4th edn. Lippincott-Raven, Pjiladelphia (2001)Google Scholar
  5. 5.
    Ha, Y., Stevens, D.J., Skehel, J.J., Wiley, D.C.: H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO J. 21, 865–875 (2002)PubMedCrossRefGoogle Scholar
  6. 6.
    Fouchier, R.A., Munster, V., Wallensten, A., Bestebroer, T.M., Herfst, S., Smith, D., Rimmelzwaan, G.F., Olsen, B., Osterhaus, A.D.: Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J. Virol. 79, 2814–2822 (2005)PubMedCrossRefGoogle Scholar
  7. 7.
    Scholtissek, C., Rohde, W., Von Hoyningen, V., Rott, R.: On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87, 13–20 (1978)PubMedCrossRefGoogle Scholar
  8. 8.
    Kawaoka, Y., Krauss, S., Webster, R.G.: Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 63, 4603–4608 (1989)PubMedGoogle Scholar
  9. 9.
    Cox, N.J., Subbarao, K.: Global epidemiology of influenza: past and present. Ann. Rev. Med. 51, 407–421 (2000)PubMedCrossRefGoogle Scholar
  10. 10.
    Claas, E.C., Osterhaus, A.D., van Beek, R., De Jong, J.C., Rimmelzwaan, G.F., Senne, D.A., Krauss, S., Shortridge, K.F., Webster, R.G.: Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472–477 (1998)PubMedCrossRefGoogle Scholar
  11. 11.
    Lin, Y.P., Shaw, M., Gregory, V., Cameron, K., Lim, W., Klimov, A., Subbarao, K., Guan, Y., Krauss, S., Shortridge, K., Webster, R., Cox, N., Hay, A.: Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc. Natl. Acad. Sci. U S A 97, 9654–9658 (2000)PubMedCrossRefGoogle Scholar
  12. 12.
    Reid, A.H., Taubenberger, J.K., Fanning, T.G.: Evidence of an absence: the genetic origins of the 1918 pandemic influenza virus. Nat. Rev. Microbiol. 2, 909–914 (2004)PubMedCrossRefGoogle Scholar
  13. 13.
    Lipatov, A.S., Govorkova, E.A., Webby, R.J., Ozaki, H., Peiris, M., Guan, Y., Poon, L., Webster, R.G.: Influenza: emergence and control. J. Virol. 78, 8951–8959 (2004)PubMedCrossRefGoogle Scholar
  14. 14.
    Palese, P.: Influenza: old and new threats. Nat. Med. 10, S82–S87 (2004)PubMedCrossRefGoogle Scholar
  15. 15.
    Horimoto, T., Kawaoka, Y.: Influenza: lessons from past pandemics, warnings from current incidents. Nat. Rev. Microbiol. 3, 591–600 (2005)PubMedCrossRefGoogle Scholar
  16. 16.
    Ito, T., Suzuki, Y., Suzuki, T., Takada, A., Horimoto, T., Wells, K., Kida, H., Otsuki, K., Kiso, M., Ishida, H., Kawaoka, Y.: Recognition of N-glycolylneuraminic acid linked to galactose by the alpha2,3 linkage is associated with intestinal replication of influenza A virus in ducks. J. Virol. 74, 9300–9305 (2000)PubMedCrossRefGoogle Scholar
  17. 17.
    Ha, Y., Stevens, D.J., Skehel, J.J., Wiley, D.C.: X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc. Natl. Acad. Sci. U S A 98, 11181–11186 (2001)PubMedCrossRefGoogle Scholar
  18. 18.
    Gamblin, S.J., Haire, L.F., Russell, R.J., Stevens, D.J., Xiao, B., Ha, Y., Vasisht, N., Steinhauer, D.A., Daniels, R.S., Elliot, A., Wiley, D.C., Skehel, J.J.: The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science 303, 1838–1842 (2004)PubMedCrossRefGoogle Scholar
  19. 19.
    Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., Klenk, H.D.: Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. U S A 101, 4620–4624 (2004)PubMedCrossRefGoogle Scholar
  20. 20.
    Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y.: Avian flu: influenza virus receptors in the human airway. Nature 440, 435–436 (2006)PubMedCrossRefGoogle Scholar
  21. 21.
    Ito, T., Suzuki, Y., Mitnaul, L., Vines, A., Kida, H., Kawaoka, Y.: Receptor specificity of influenza A viruses correlates with the agglutination of erythrocytes from different animal species. Virology 227, 493–499 (1997)PubMedCrossRefGoogle Scholar
  22. 22.
    Taki, T., Rokukawa, C., Kasama, T., Kon, K., Ando, S., Abe, T., Handa, S.: Human meconium gangliosides. Characterization of a novel I-type ganglioside with the NeuAc alpha 2-6Gal structure. J. Biol. Chem. 267, 11811–11817 (1992)PubMedGoogle Scholar
  23. 23.
    Guo, C.-T., Takahashi, T., Bukawa, W., Takahashi, N., Yagi, H., Kato, K., Hidari, K.I.P.J., Miyamoto, D., Suzuki, T., Suzuki, Y.: Edible bird’s nest extract inhibits influenza virus infection. Antiviral Res. 70, 140–146 (2006)PubMedCrossRefGoogle Scholar
  24. 24.
    Nakajima, H., Kiyokawa, N., Katagiri, Y.U., Taguchi, T., Suzuki, T., Sekino, T., Mimori, K., Ebata, T., Saito, M., Nakao, H., Takeda, T., Fujimoto, J.: Kinetic analysis of binding between Shiga toxin and receptor glycolipid Gb3Cer by surface plasmon resonance. J. Biol. Chem. 276, 42915–42922 (2001)PubMedCrossRefGoogle Scholar
  25. 25.
    MacDonald, R.C., MacDonald, R.I., Menco, B.P., Takeshita, K., Subbarao, N.K., Hu, L.R.: Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061, 297–303 (1991)PubMedCrossRefGoogle Scholar
  26. 26.
    Compans, R.W., Klenk, H.D., Caliguiri, L.A., Choppin, P.W.: Influenza virus proteins. I. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology 42, 880–889 (1970)PubMedCrossRefGoogle Scholar
  27. 27.
    Skehel, J.J., Schild, G.C.: The polypeptide composition of influenza A viruses. Virology 44, 396–408 (1971)PubMedCrossRefGoogle Scholar
  28. 28.
    Fujiyoshi, Y., Kume, N.P., Sakata, K., Sato, S.B.: Fine structure of influenza A virus observed by electron cryo-microscopy. EMBO J. 13, 318–326 (1994)PubMedGoogle Scholar
  29. 29.
    Humphrey, A.J., Fremann, C., Critchley, P., Malykh, Y., Schauer, R., Bugg, T.D.: Biological properties of N-acyl and N-haloacetyl neuraminic acids: processing by enzymes of sialic acid metabolism, and interaction with influenza virus. Bioorg. Med. Chem. 10, 3175–3185 (2002)PubMedCrossRefGoogle Scholar
  30. 30.
    Cooper, M.A., Hansson, A., Lofas, S., Williams, D.H.: A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal. Biochem. 277, 196–205 (2000)PubMedCrossRefGoogle Scholar
  31. 31.
    Erb, E.M., Chen, X., Allen, S., Roberts, C.J., Tendler, S.J., Davies, M.C., Forsen, S.: Characterization of the surfaces generated by liposome binding to the modified dextran matrix of a surface plasmon resonance sensor chip. Anal. Biochem. 280, 29–35 (2000)PubMedCrossRefGoogle Scholar
  32. 32.
    Takemoto, D.K., Skehel, J.J., Wiley, D.C.: A surface plasmon resonance assay for the binding of influenza virus hemagglutinin to its sialic acid receptor. Virology 217, 452–458 (1996)PubMedCrossRefGoogle Scholar
  33. 33.
    Barton, E.S., Connolly, J.L., Forrest, J.C., Chappell, J.D., Dermody, T.S.: Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J. Biol. Chem. 276, 2200–2211 (2001)PubMedCrossRefGoogle Scholar
  34. 34.
    Gestwicki, J.E., Cairo, C.W., Mann, D.A., Owen, R.M., Kiessling, L.L.: Selective immobilization of multivalent ligands for surface plasmon resonance and fluorescence microscopy. Anal. Biochem. 305, 149–155 (2002)PubMedCrossRefGoogle Scholar
  35. 35.
    Critchley, P., Dimmock, N.J.: Binding of an influenza A virus to a neomembrane measured by surface plasmon resonance. Bioorg. Med. Chem. 12, 2773–2780 (2004)PubMedCrossRefGoogle Scholar
  36. 36.
    Clyne, M., Dillon, P., Daly, S., O’Kennedy, R., May, F.E., Westley, B.R., Drumm, B.: Helicobacter pylori interacts with the human single-domain trefoil protein TFF1. Proc. Natl. Acad. Sci. U S A 101, 7409–7414 (2004)PubMedCrossRefGoogle Scholar
  37. 37.
    Amano, Y., Cheng, Q.: Detection of influenza virus: traditional approaches and development of biosensors. Anal. Bioanal. Chem. 381, 156–164 (2005)PubMedCrossRefGoogle Scholar
  38. 38.
    Gambaryan, A.S., Tuzikov, A.B., Pazynina, G.V., Webster, R.G., Matrosovich, M.N., Bovin, N.V.: H5N1 chicken influenza viruses display a high binding affinity for Neu5Acalpha2-3Galbeta1-4(6-HSO3)GlcNAc-containing receptors. Virology 326, 310–316 (2004)PubMedCrossRefGoogle Scholar
  39. 39.
    Stevens, J., Blixt, O., Glaser, L., Taubenberger, J.K., Palese, P., Paulson, J.C., Wilson, I.A.: Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J. Mol. Biol. 355, 1143–1155 (2006)PubMedCrossRefGoogle Scholar
  40. 40.
    Matrosovich, M., Miller-Podraza, H., Teneberg, S., Robertson, J., Karlsson, K-A.: Influenza viruses display high-affinity binding to human polyglycosylceramides represented on a solid-phase assay surface. Virology 223, 413–416 (1996)PubMedCrossRefGoogle Scholar
  41. 41.
    Gambaryan, A., Yamnikova, S., Lvov, D., Tuzikov, A., Chinarev, A., Pazynina, G., Webster, R., Matrosovich, M., Bovin, N.: Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology 334, 276–283 (2005)PubMedCrossRefGoogle Scholar
  42. 42.
    Shinohara, Y., Hasegawa, Y., Kaku, H., Shibuya, N.: Elucidation of the mechanism enhancing the avidity of lectin with oligosaccharides on the solid phase surface. Glycobiology 7, 1201–1208 (1997)PubMedCrossRefGoogle Scholar
  43. 43.
    Baenziger, J.U., Fiete, D.: Structure of the complex oligosaccharides of fetuin. J. Biol. Chem. 254, 789–795 (1979)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kazuya I. P. J. Hidari
    • 1
  • Shizumi Shimada
    • 1
  • Yasuo Suzuki
    • 1
    • 2
  • Takashi Suzuki
    • 1
  1. 1.Department of Biochemistry, School of Pharmaceutical Sciences, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation, and COE Program in the 21st centuryUniversity of ShizuokaShizuoka-shiJapan
  2. 2.Department of Biochemical Sciences, College of Life and Health SciencesChubu UniversityKasugaiJapan

Personalised recommendations