Glycoconjugate Journal

, Volume 24, Issue 9, pp 543–550 | Cite as

Relative sialylation and fucosylation of synovial and plasma fibronectins in relation to the progression and activity of rheumatoid arthritis

  • Magdalena Przybysz
  • Dorota Maszczak
  • Krzysztof Borysewicz
  • Jacek Szechiński
  • Iwona Kątnik-Prastowska


The expressions of terminal sugars in synovial and plasma fibronectins were studied in relation to rheumatoid arthritis (RA) progression defined according to the early, established and late radiological changes in the patients’ hands. The relative amounts of sialic acid and fucose were analyzed by lectin-ELISA using appropriate sialic acid-linked α2-3 (Maackia amurensis) and α2-6 (Sambucus nigra) lectins as well as fucose-linked α1-6 (Aleuria aurantia), α1-2 (Ulex europaeus), and α1-3 (Tetragonolobus purpureus). In the early RA group, the synovial fibronectin reactivities were the lowest with the all lectins used. In the established and late groups, relative sialylation and fucosylation significantly increased. However, sialylation negligibly decreased, whereas fucosylation remained at nearly the same level in the late group. Moreover, the expression of α1-6-linked fucose was found to be related to disease activity. In contrast, plasma fibronectin reactivity with lectins showed different dynamic alterations. In the early RA group, the reactivity of fibronectin with the lectins used was similar to that of healthy individuals, whereas it increased significantly in the established RA group compared with the early and normal plasma groups. In the late RA group it decreased to a level similar to that of the normal group. The lower expressions of terminal sugars in synovial fibronectin were mainly associated with the early degenerative processes of RA. In conclusion, such alterations may be applicable as a stage-specific marker for diagnosis and therapy of RA patients. The higher expression of terminal sugars in fibronectin could be associated with repair and adaptation processes in longstanding disease.


Fibronectin Rheumatoid arthritis Sialylation Fucosylation Synovial fluid 



rheumatoid arthritis




lectin from Maackia amurensis


lectin from Sambucus nigra


lectin from Aleuria aurantia


lectin from Tetragonolobus purpureus


lectin from Ulex europaeus


  1. 1.
    Arnett, F.C., Edworthy, S.M., Bloch, D.A., McShane, D.J., Fries, J.F., Cooper, N.S., Healey, L.A., Kaplan, S.R., Liang, M.H., Luthra, H.S., et al.: The American rheumatism association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988)PubMedCrossRefGoogle Scholar
  2. 2.
    Audette, G.F., Vandonselaar, M., Delbaere, L.T.J.: The 2.2 Å resolution structure of the O(H) blood-group-specific lectin I from Ulex europaeus. J. Mol. Biol. 304, 423–433 (2000)PubMedCrossRefGoogle Scholar
  3. 3.
    Axford, J.S.: Glycosylation and rheumatic disease. Biochim. Biophys. Acta. 1455, 219–229 (1999)PubMedGoogle Scholar
  4. 4.
    Barilla, M.L., Carsons, S.E.: Fibronectin fragments and their role in inflammatory arthritis. Semin. Arthritis Rheum. 29, 252–265 (2000)PubMedCrossRefGoogle Scholar
  5. 5.
    Becker, D.J., Lowe, J.B.: Fucose, biosynthesis and biological function in mammals. Glycobiology 13, 41–53 (2003)CrossRefGoogle Scholar
  6. 6.
    Carsons, S.: Enhanced expression of a peanut agglutinin reactive O linked oligosaccharide on fibronectins from the synovial fluid of patients with rheumatic disease, quantitation, domain localization, and functional significance. J. Rheumatol. 29, 896–902 (2002)PubMedGoogle Scholar
  7. 7.
    Carsons, S., Lavietes, B.B., Slomiany, A., Diamond, H.S., Berkowitz, E.: Carbohydrate heterogeneity of fibronectins. J. Clin. Invest. 80, 1342–1349 (1987)PubMedCrossRefGoogle Scholar
  8. 8.
    Chen, H., Gu, D.N., Burton-Wurster, N., MacLeod, J.N.: Absence of the I-10 protein segment mediates restricted dimerization of the cartilage-specific fibronectin isoform. J. Biol. Chem. 277, 20095–20103 (2002)PubMedCrossRefGoogle Scholar
  9. 9.
    Clemmensen, I., Andersen, B.: Different molecular forms of fibronectin in rheumatoid synovial fluid. Arthritis Rheum. 25, 25–31 (1982)PubMedCrossRefGoogle Scholar
  10. 10.
    Durand, G., Seta, N.: Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. Clin. Chem. 46, 795–805 (2000)PubMedGoogle Scholar
  11. 11.
    Ferens-Sieczkowska, M., Kossowska, B., Gancarz, R., Dudzik, D., Knas, M., Popko, J., Zwierz, K.: Fucosylation in synovial fluid as a novel clinical marker for differentiating joint diseases – a preliminary study. Clin. Exp. Rheumatol. 25, 134–137 (2007)Google Scholar
  12. 12.
    Fukuda, M., Levery, S.B., Hakomori, S.: Carbohydrate structure of hamster plasma fibronectin. Evidence for chemical diversity between cellular and plasma fibronectins. J. Biol. Chem. 257, 6856–6860 (1982)PubMedGoogle Scholar
  13. 13.
    Hassell, A.B., Davis, M.J., Fowler, P.D., Clarke, S., Fisher, J., Shadforth, M.F., Jones, P.W., Dawes, P.T.: The relationship between serial measures of disease activity and outcome in rheumatoid arthritis. Q. J. Med. 86, 601–607 (1993)PubMedGoogle Scholar
  14. 14.
    Helenius, A., Aebi, M.: Intracellular function of N-linked glycans. Science 291, 2364–2369 (2001)PubMedCrossRefGoogle Scholar
  15. 15.
    Hirnle, L., Kątnik-Prastowska, I.: Amniotic fibronectin fragmentation and domain and sialyl- and fucosyl-glycotope expression associated with pregnancy complicated by intrauterine infection. Clin. Chem. Lab. Med. 45, 208–214 (2007)PubMedCrossRefGoogle Scholar
  16. 16.
    Homandberg, G.A.: Potential regulation of cartilage metabolism in osteoarthritis by fibronectin fragments. Front. Biosci. 4, d713–d730 (1999)PubMedCrossRefGoogle Scholar
  17. 17.
    Homandberg, G.A.: Cartilage damage by matrix degradation products, fibronectin fragments. Clin. Orthop. Relat. Res. 391, S100–S107 (2001)PubMedCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Kątnik, I., Jadach, J., Krotkiewski, H., Gerber, J.: Investigating the glycosylation of normal and ovarian cancer haptoglobins using digoxigenin-labeled lectins. Glycosyl. Dis. 1, 97–104 (1994)CrossRefGoogle Scholar
  20. 20.
    Kątnik, I., Goodarzi, M.T., Turner, G.A.: An improved ELISA for the determination of sialyl Lewisx structures on purified glycoconjugates. Glycoconj. J. 13, 1043–1047 (1996)PubMedCrossRefGoogle Scholar
  21. 21.
    Kątnik-Prastowska, I., Kratz, E.M., Faundez, R., Chełmońska-Soyta, A.: Lower expression of α2-3-sialylated fibronectin glycoform and appearance of asialo-FN glycoform associate with high concentration of fibronectin in human seminal plasma with abnormal semen parameters. Clin. Chem. Lab. Med. 44, 1119–1125 (2006)PubMedCrossRefGoogle Scholar
  22. 22.
    Knibbs, R., Goldstein, I.J., Ratcliff, R.M., Shibuya, N.: Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. J. Biol. Chem. 266, 83–88 (1991)PubMedGoogle Scholar
  23. 23.
    Köttgen, E., Hell, B., Müller, C., Kainer, F., Tauber, R.: Developmental changes in the glycosylation and binding properties of human fibronectins, Characterization of glycan structures and ligand binding of human fibronectins from adult plasma, cord blood and amniotic fluid. Biol. Chem. Hoppe-Seyler 370, 1285–1294 (1989)PubMedGoogle Scholar
  24. 24.
    Kriegsmann, J., Berndt, A., Hansen, T., Borsi, L., Zardi, L., Bräuer, P.K., Otto, M., Kirkpatrick, C.J., Gay, S., Kosmehl, H.: Expression of fibronectin splice variants and oncofetal glycosylated fibronectin in the synovial membranes o patients wit rheumatoid arthritis and osteoarthritis. Rheumatol. Int. 24, 25–33 (2004)PubMedCrossRefGoogle Scholar
  25. 25.
    Matsuura, H., Greene, T., Hakomori, S.: An alpha-N-acetylgalactosaminylation at the threonine residue of a defined peptide sequence creates the oncofetal peptide epitope in human fibronectin. J. Biol. Chem. 264, 10472–10476 (1989)PubMedGoogle Scholar
  26. 26.
    Millard, C.H., Campbell, I.D., Pickford, A.R.: Gelatin binding to the 8F19F1 module pair of human fibronectin requires site-specific N-glycosylation. FEBS Lett. 579, 4529–4534 (2005)PubMedCrossRefGoogle Scholar
  27. 27.
    Peters, J.H., Carsons, S., Yoshida, M., Ko, F., McDougall, S., Loredo, G.A., Hahn, T.J.: Electrophoretic characterization of species of fibronectin bearing sequences from the N-terminal heparin binding domain in synovial fluid samples from patients with osteoarthritis and rheumatoid arthritis. Arthritis Res. Ther. 5, R329–R339 (2003)PubMedCrossRefGoogle Scholar
  28. 28.
    Przybysz, M., Borysewicz, K., Szechiñski, J., Kątnik-Prastowska, I.: Synovial fibronectin fragmentation and domain expressions in relation to rheumatoid arthritis progression. Rheumatology 46, 1071–1075 (2007)Google Scholar
  29. 29.
    Raza, K., Falciani, F., Curnow, S.J., Ross, E.J., Lee, C., Akbar, A.N., Lord, J.M., Gordon, C., Buckley, C.D., Salmon, M.: Early rheumatoid arthritis is characterized by a distinct and transient synovial fluid cytokine profile of T cell and stromal cell origin. Arthritis Res. Ther. 7, R784–R795 (2005)PubMedCrossRefGoogle Scholar
  30. 30.
    Rees-Milton, K.J., Terry, D., Anastassiades, T.P.: Hyperglycosylation of fibronectin by TGF-β1-stimulated chondrocyte. Biochem. Biophys. Res. Commun. 317, 844–850 (2004)PubMedCrossRefGoogle Scholar
  31. 31.
    Renton, P.: Imaging in rheumatoid arthritis. In: Maddison, P.J., Isenberg, D.A., Woo, P., Glass, D.N. (eds.) Oxford Textbook of Rheumatology, pp. 24–51. Oxford University Press, Oxford (1998)Google Scholar
  32. 32.
    Ryden, I., Påhlsson, P., Lundbland, A., Skogh, T.: Fucosylation of α1-acid glycoprotein (orosomucoid) compared with traditional biochemical markers of inflammation in recent onset rheumatoid arthritis. Clin. Chim. Acta 317, 221–229 (2002)PubMedCrossRefGoogle Scholar
  33. 33.
    Sanchez-Pernaute, O., Lopez-Armada, M.J., Calvo, E., Diez-Ortego, I., Largo, R., Egido, J., Herrero-Beaumont, G.: Fibrin generated in the synovial fluid activates intimal cells from their apical surface, a sequential morphological study in antigen-induced arthritis. Rheumatology 42, 19–25 (2003)PubMedCrossRefGoogle Scholar
  34. 34.
    Schauer, R.: Sialic acids, fascinating sugars in higher animals and man. Zoology 107, 49–64 (2004)PubMedCrossRefGoogle Scholar
  35. 35.
    Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J.: The elderberry (Sambucus nigra L) bark lectin recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–1601 (1987)PubMedGoogle Scholar
  36. 36.
    Smith, K.D., Pollacchi, A., Field, M., Watson, J.: The heterogeneity of the glycosylation of alpha-1-acid glycoprotein between the sera and synovial fluid in rheumatoid arthritis. Biomed. Chromatogr. 16, 261–266 (2002)PubMedCrossRefGoogle Scholar
  37. 37.
    Tajiri, M., Yoshida, S., Wada, Y.: Differential analysis of site-specific glycans on plasma and cellular fibronectins, application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology 15, 1332–1340 (2005)PubMedCrossRefGoogle Scholar
  38. 38.
    Tak, P.P.: Is early rheumatoid arthritis the same disease process as late rheumatoid arthritis. Best Practice & Research in Clinical Rheumatology 15, 17–26 (2001)CrossRefGoogle Scholar
  39. 39.
    Van Dijk, W., Brinkman-van der Linden, E.C., Havenaar, E.C.: Glycosylation of α1-acid glycoprotein (orosomucoid) in health and disease, Occurrence, regulation and possible functional implications. Trends Glycosci. Glycotechnol. 10, 235–245 (1998)Google Scholar
  40. 40.
    Wang, X., Gu, J., Ihara, H., Miyoshi, E., Honke, K., Taniguchi, N.: Core fucosylation regulates epidermal growth factor receptor-mediated intracellular signaling. J. Biol. Chem. 281, 2572–2577 (2006)PubMedCrossRefGoogle Scholar
  41. 41.
    Wierzbicka-Patynowski, I., Schwarzbauer, J.E.: The ins and outs of fibronectin matrix assembly. J. Cell Sci. 116, 3269–3276 (2003)PubMedCrossRefGoogle Scholar
  42. 42.
    Zerfaoui, M., Fukuda, M., Sbarra, V., Lombardo, D., El-Battari, A.: Alpha(1,2)-fucosylation prevents sialyl Lewis x expression and E-selectin-mediated adhesion of fucosyltransferase VII-transfected cells. Eur. J. Biochem. 267, 53–61 (2000)PubMedCrossRefGoogle Scholar
  43. 43.
    Zheng, M., Hakomori, S.: Soluble fibronectin interaction with cell surface and extracellular matrix is mediated by carbohydrate-to-carbohydrate interaction. Arch. Biochem. Biophys. 374, 93–99 (2000)PubMedCrossRefGoogle Scholar
  44. 44.
    Yamashita, K., Kochibe, N., Ohkura, T., Ueda, I., Kobata, A.: Fractionation of l-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J. Biol. Chem. 260, 4688–4693 (1985)PubMedGoogle Scholar
  45. 45.
    Yan, L., Wilkins, P.P., Alvarez-Manilla, G., Do, S.I., Smith, D.F., Cummings, R.D.: Immobilized Lotus tetragonolobus agglutinin binds oligosaccharides containing the Lex determinant. Glycoconj. J. 14, 45–55 (1997)PubMedCrossRefGoogle Scholar
  46. 46.
    Yasuda, T.: Cartilage destruction by matrix degradation products. Mod. Rheumatol. 16, 197–205 (2006)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Magdalena Przybysz
    • 1
  • Dorota Maszczak
    • 1
  • Krzysztof Borysewicz
    • 2
  • Jacek Szechiński
    • 2
  • Iwona Kątnik-Prastowska
    • 1
  1. 1.Department of Chemistry and ImmunochemistryWrocław Medical UniversityWrocławPoland
  2. 2.Department of RheumatologyWrocław Medical UniversityWrocławPoland

Personalised recommendations