Glycoconjugate Journal

, Volume 24, Issue 9, pp 531–541

Liver-specific increase of UTP and UDP-sugar concentrations in rats induced by dietary vitamin B6-deficiency and its relation to complex N-glycan structures of liver membrane-proteins

  • Agnes B. Renner
  • Kathrin Rieger
  • Detlef Grunow
  • Martin Zimmermann-Kordmann
  • Martin Gohlke
  • Werner Reutter
Article
  • 102 Downloads

Abstract

This is the first known report on the influence of vitamin B6-deficiency on the concentration of UDP-sugars and other uracil nucleotides in rats. Animals aged 3 weeks or 2 months were fed a vitamin B6-free diet for periods varying from 3 days to 7 weeks. Nucleotides were quantified by enzymatic-photometry and by SAX-high precision liquid chromatography. In 3 week-old rats, vitamin B6-deficiency resulted in an up to 6.3-fold increase in the concentrations of UTP, UDP, UMP and UDP-sugars and less of CTP in rat liver, while no changes were observed in older rats. In young rats, the concentration of uracil nucleotides started to increase after 1 week diet, with a maximum after 2 weeks. After 5 weeks, the concentrations returned to normal values. In heart, lungs, kidney and brain, concentrations were measured after 2 weeks diet in young rats. In contrast to liver, the heart muscle uracil nucleotide concentrations were decreased by 40%. In kidney, the sum of UTP, UDP and UMP showed a decrease of 40%, whereas UDP-sugars were increased 1.4-fold. In the lungs, nucleotide concentrations were mostly unaffected by vitamin B6-deficiency, despite a 70% increase of UDP-GA. In brain, UDP-Glc, UDP-Gal and the sum of CTP and CDP showed an increase of 30–50%. We became surprised that the increased UDP-sugar concentrations did not influence the structure of liver plasma membrane-N-glycans. Despite the 4 to 6-fold increase of UTP and UDP-sugars, no changes in the complexity or sialylation of these N-glycans could be detected. This study demonstrates that, especially in liver, pyridoxal phosphate is closely involved in the control of uracil nucleotides during a defined period of development. In contrast to in vitro experiments, in vivo N-glycan biosynthesis in liver is regulated by a more complex or higher mechanism than substrate concentrations.

Keywords

Vitamin B6-deficiency UTP UDP-sugars N-glycosylation of plasma membrane glycans Rat liver 

References

  1. 1.
    Allgood, V.E., Cidlowski, J.A.: Vitamin B6 modulates transcriptional activation by multiple members of the steroid hormone receptor superfamily. J. Biol. Chem. 267, 3819–3824 (1992)PubMedGoogle Scholar
  2. 2.
    Allgood, V.E., Oakley, R.H., Cidlowski, J.A.: Modulation by vitamin B6 of glucocorticoid receptor-mediated gene expression requires transcription factors in addition to the glucocorticoid receptor. J. Biol. Chem. 268, 20870–20876 (1993)PubMedGoogle Scholar
  3. 3.
    Allgood, V.E., Powell-Oliver, F.E., Cidlowski, J.A.: Vitamin B6 influences glucocorticoid receptor-dependent gene expression. J. Biol. Chem. 265, 12424–12433 (1990)PubMedGoogle Scholar
  4. 4.
    Büchsel, R., Berger, D., Reutter, W.: Routes of fucoproteins in plasma membrane domains. FEBS. Lett. 113, 95–98 (1980)PubMedCrossRefGoogle Scholar
  5. 5.
    Decker, K., Keppler, D.: Galactosamine induced liver injury. Prog. Liver. Dis. 4, 183–199 (1972)PubMedGoogle Scholar
  6. 6.
    Friedrich, W.: Handbuch der Vitamine. Urban & Schwarzenberg Verlag, München, Wien, Baltimore (1987)Google Scholar
  7. 7.
    Gawlizek, M., Valley, U., Wagner, R.: Ammonium ion and glucosamine dependent increases of oligosaccharide complexity in recombinant glycoproteins secreted from cultivated BHK-21 cells. Biotechnol. Bioeng. 57, 518–528 (1998)CrossRefGoogle Scholar
  8. 8.
    Gohlke, M., Baude, G., Nuck, R., Grunow, D., Kannicht, C., Bringmann, P., Donner, P., Reutter, W.: O-linked L-fucose is present in Desmodus rotundus salivary plasminogen activator. J. Biol. Chem. 271, (1996)Google Scholar
  9. 9.
    Grammatikos, S., Valley, U., Nimtz, M., Conradt, H., Wagner, R.: Intracellular UDP-N-acetylhexosamine pool affects N-glycan complexity: A mechanism of ammonium action on protein glycosylation. Biotechnol. Prog. 14, 410–419 (1998)PubMedCrossRefGoogle Scholar
  10. 10.
    Keppler, D., Gawehn, K., Decker, K.: Uridin-5′-triphosphat, Uridin-5′-diphosphat, Uridin-5′-monophosphat. In: Bergmeyer, H.U. (ed.) Methoden Der Enzymatischen Analyse, pp. 2222–2227. Verlag Chemie GmbH, Weinheim (1974)Google Scholar
  11. 11.
    Keppler, D., Lesch, R., Reutter, W., Decker, K.: Experimental hepatitis induced by D-galactosamine. Exp. Mol. Pathol. 9, 279–290 (1968)PubMedCrossRefGoogle Scholar
  12. 12.
    Keppler, D., Rudigier, J., Decker, K.: Enzymic determination of uracil nucleotides in tissues. Anal. Biochem. 38, 105–114 (1970)PubMedCrossRefGoogle Scholar
  13. 13.
    Keppler, D.O., Rudigier, J.F., Bischoff, E., Decker, K.F.: The trapping of uridine phosphates by D-galactosamine. D-glucosamine, and 2-deoxy-D-galactose. A study on the mechanism of galactosamine hepatitis. Eur. J. Biochem. 17, 246–253 (1970)PubMedCrossRefGoogle Scholar
  14. 14.
    Nuck, R., Gohlke, M.: Characterization of subnanomolar amounts of N-glycans by 2-aminobenzamide labelling, MALDI-TOF-MS and Computer Assisted Sequence Analysis. In: Townsend, R.R., Hotchkiss, J.A.T. (eds.) Techniques of Glycobiology. pp. 491–508. Marcel Dekker, New York (1997)Google Scholar
  15. 15.
    Oka, T., Komori, N., Kuwahata, M., Hiroi, Y., Shimoda, T., Okada, M., Natori, Y.: Pyridoxal 5′-phosphate modulates expression of cytosolic aspartate aminotransferase gene by inactivation of glucocorticoid receptor. J. Nutr. Sci. Vitaminol. 41, 363–375 (1995)PubMedGoogle Scholar
  16. 16.
    Oka, T., Komori, N., Kuwahata, M., Okada, M., Natori, Y.: Vitamin B6 modulates expression of albumin gene by inactivating tissue-specific DNA-binding protein in rat liver. Biochem. J. 309, 243–248 (1995)PubMedGoogle Scholar
  17. 17.
    Oka, T., Komori, N., Kuwahata, M., Sassa, T., Suzuki, I., Okada, M., Natori, Y.: Vitamin B6 deficiency causes activation of RNA polymerase and general enhancement of gene expression in rat liver. FEBS. Lett. 331, 162–164 (1993)PubMedCrossRefGoogle Scholar
  18. 18.
    Oka, T., Komori, N., Kuwahata, M., Suzuki, I., Okada, M., Natori, Y.: Effect of vitamin B6 deficiency on the expression of glycogen phosphorylase mRNA in rat liver and skeletal muscle. Experientia. 50, 127–129 (1994)PubMedCrossRefGoogle Scholar
  19. 19.
    Okada, M., Ishikawa, K., Watanabe, K.: Effect of vitamin B6 deficiency on glycogen metabolism in the skeletal muscle, heart, and liver of rats. J. Nutr. Sci. Vitaminol. 37, 349–357 (1991)PubMedGoogle Scholar
  20. 20.
    Pels Rijcken, W.R., Hooghwinkel, G.J., Ferwerda, W.: Pyrimidine metabolism and sugar nucleotide synthesis in rat liver. Biochem. J. 266, 777–783 (1990)PubMedGoogle Scholar
  21. 21.
    Pels Rijcken, W.R., Overdijk, B., van den Eijnden, D.H., Ferwerda, W.: The effect of increasing nucleotide-sugar concentrations on the incorporation of sugars into glycoconjugates in rat hepatocytes. Biochem. J. 305, 865–870 (1995)Google Scholar
  22. 22.
    Pels Rijcken, W.R., Overdijk, B., van den Eijnden, D.H., Ferwerda, W.: Pyrimidine nucleotide metabolism in rat hepatocytes: evidence for compartmentation of nucleotide pools. Biochem. J. 293, 207–213 (1993)PubMedGoogle Scholar
  23. 23.
    Pfleger, R.C., Anderson, N.G., Snyder, F.: Lipid class and fatty acid composition of rat liver plasma membranes isolated by zonal centrifugation. Biochemistry. 7, 2826–2833 (1968)PubMedCrossRefGoogle Scholar
  24. 24.
    Reutter, W., Hassels, B., Lesch, R.: Induction of edema in the adrenalectomized rat by D-galactosamine. Naturwissenschaften. 58, 576 (1971)PubMedCrossRefGoogle Scholar
  25. 25.
    Reutter, W., Lesch, R., Keppler, D., Decker, K.: Galactosamine-hepatitis. Naturwissenschaften. 55, 497 (1968)PubMedCrossRefGoogle Scholar
  26. 26.
    Reynolds, R.D., Reutter, W.: Inhibition of induction of rat liver tyrosine aminotransferase by D-galactosamine. J. Biol. Chem. 248, 1562–1567 (1973)PubMedGoogle Scholar
  27. 27.
    Robinson, F.A.: The Vitamin Co-factors of Enzyme Systems. Pergamon, New York (1966)Google Scholar
  28. 28.
    Sato, A., Nishioka, M., Awata, S., Nakayama, K., Okada, M., Horiuchi, S., Okabe, N., Sassa, T., Oka, T., Natori, Y.: Vitamin B6 deficiency accelerates metabolic turnover of cystathionase in rat liver. Arch. Biochem. Biophys. 330, 409–413 (1996)PubMedCrossRefGoogle Scholar
  29. 29.
    Snell, E.E.: History of vitamin B6. In: Marino, G., Sannia, G., Bossa, F. (eds.) Biochemistry of Vitamin B6 and PQQ. pp. 1–5. Birkhäuser Verlag, Basel (1994)Google Scholar
  30. 30.
    Svennerholm, L., Fredmann, P.: A procedure for the quantitative isolation of brain gangliosides. Biochem. Biophys. Acta. 617, 97–109 (1980)PubMedGoogle Scholar
  31. 31.
    Trakatellis, A., Dimitriadou, A., Trakatelli, M.: Pyridoxine deficiency: new approaches in immunosuppression and chemotherapy. Postgrad. Med. J. 73, 617–622 (1997)PubMedCrossRefGoogle Scholar
  32. 32.
    Tully, D.B., Scoltock, A.B., Cidlowski, J.A.: Vitamin B6 modulation of steroid receptor-mediated gene expression. In: Marino, G., Sannia, G., Bossa, F. (eds.) Biochemistry of Vitamin B6 and PQQ. pp. 319–327. Birkhäuser Verlag, Basel (1994)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Agnes B. Renner
    • 1
    • 2
  • Kathrin Rieger
    • 1
    • 3
  • Detlef Grunow
    • 1
  • Martin Zimmermann-Kordmann
    • 1
  • Martin Gohlke
    • 1
  • Werner Reutter
    • 1
  1. 1.Institut für Biochemie und MolekularbiologieCharité - Universitätsmedizin BerlinBerlinGermany
  2. 2.AugenklinikCharité - Universitätsmedizin BerlinBerlinGermany
  3. 3.Medizinische Klinik III, HämatologieOnkologie und Transfusionsmedizin,Charité - Universitätsmedizin BerlinBerlinGermany

Personalised recommendations