Advertisement

Glycoconjugate Journal

, Volume 24, Issue 8, pp 411–420 | Cite as

The oncofetal Thomsen–Friedenreich carbohydrate antigen in cancer progression

  • Lu-Gang YuEmail author
Review

Abstract

The oncofetal Thomsen–Friedenreich carbohydrate antigen (Galβ1-3GalNAcα1-Ser/Thr TF or T antigen) is a pan-carcinoma antigen highly expressed by about 90% of all human carcinomas. Its broad expression and high specificity in cancer have attracted many investigations into its potential use in cancer diagnosis and immunotherapy. Over the past few years increasing evidence suggests that the increased TF occurrence in cancer cells may be functionally important in cancer progression by allowing increased interaction/communication of the cells with endogenous carbohydrate-binding proteins (lectins), particularly the members of the galactoside-binding galectin family. This review focuses on the recent progress in understanding of the regulation and functional significance of increased TF occurrence in cancer progression and metastasis.

Keywords

TF antigen Cancer metastasis Glycosylation Adhesion Galectins 

Notes

Acknowledgment

The author thanks Professor Jonathan Rhodes for his critical reading of the manuscript. The work in the author’s laboratory is supported by grants from Cancer Research UK (C7595), the Royal Society (R1/2768) and the Mizutani Foundation for Glycosciences (040002).

References

  1. 1.
    Kim, Y.S., Gum, J. Jr, Brockhausen, I.: Mucin glycoproteins in neoplasia. Glycoconj. J. 13, 693–707 (1996)PubMedGoogle Scholar
  2. 2.
    Kim, Y.J., Varki, A.: Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj. J 14, 569–576 (1997)PubMedGoogle Scholar
  3. 3.
    Ono, M., Hakomori, S.: Glycosylation defining cancer cell motility and invasiveness. Glycoconj. J. 20, 71–78 (2004)PubMedGoogle Scholar
  4. 4.
    Springer, G.F.: Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J. Mol. Med. 75, 594–602 (1997)PubMedGoogle Scholar
  5. 5.
    Campbell, B.J., Finnie, I.A., Hounsell, E.F., Rhodes, J.M.: Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin. J. Clin. Invest. 95, 571–576 (1995)PubMedGoogle Scholar
  6. 6.
    Springer, G.F.: T and Tn, general carcinoma autoantigens. Science 224, 1198–1206 (1984)PubMedGoogle Scholar
  7. 7.
    Hanisch, F.G., Baldus, S.E.: The Thomsen–Friedenreich (TF) antigen: a critical review on the structural, biosynthetic and histochemical aspects of a pancarcinoma-associated antigen. Histol. Histopathol. 12, 263–281 (1997)PubMedGoogle Scholar
  8. 8.
    Yuan, M., Itzkowitz, S.H., Boland, C.R., Kim, Y.D., Tomita, J.T., Palekar, A., Bennington, J.L., Trump, B.F., Kim, Y.S.: Comparison of T-antigen expression in normal, premalignant, and malignant human colonic tissue using lectin and antibody immunohistochemistry. Cancer Res. 46, 4841–4847 (1986)PubMedGoogle Scholar
  9. 9.
    Itzkowitz, S.H., Yuan, M., Montgomery, C.K., Kjeldsen, T., Takahashi, H.K., Bigbee, W.L., Kim, Y.S.: Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res 49, 197–204 (1989)PubMedGoogle Scholar
  10. 10.
    Baldus, S.E., Zirbes, T.K., Hanisch, F.G., Kunze, D., Shafizadeh, S.T., Nolden, S., Monig, S.P., Schneider, P.M., Karsten, U., Thiele, J., Holscher, A.H., Dienes H.P.: Thomsen–Friedenreich antigen presents as a prognostic factor in colorectal carcinoma: a clinicopathologic study of 264 patients. Cancer 88, 1536–1543 (2000)PubMedGoogle Scholar
  11. 11.
    Shamsuddin, A.M., Tyner, G.T., Yang, G.Y.: Common expression of the tumour marker D-Galactose-ß-[1–3]-N-Acetyl-D-Galactosamine by different adenocarcinomas: evidence of field effect phenomenon. Cancer Res. 55, 149–152 (1995)PubMedGoogle Scholar
  12. 12.
    Desai, P.R., Ujjainwala, L.H., Carlstedt, S.C., Springer, G.F.: Anti-Thomsen–Friedenreich (T) antibody-based ELISA and its application to human breast carcinoma detection. J. Immunol. Methods 188, 75–85 (1995)Google Scholar
  13. 13.
    Kumar, S.R., Sauter, E.R., Quinn, T.P., Deutscher, S.L.: Thomsen–Friedenreich and Tn antigens in nipple fluid: carbohydrate biomarkers for breast cancer detection. Clin. Cancer Res. 11, 6868–6871 (2005)PubMedGoogle Scholar
  14. 14.
    Coon, J.S., Weinstein, R.S., Summers, J.L.: Blood group precursor T-antigen expression in human urinary bladder carcinoma. Am. J. Clin. Pathol. 77, 692–699 (1982)PubMedGoogle Scholar
  15. 15.
    Limas, C., Lange P.: T-antigen in normal and neoplastic urothelium. Cancer 58, 1236–1245 (1986)PubMedGoogle Scholar
  16. 16.
    Janssen, T., Petein, M., Van Velthoven, R., Van Leer, P., Fourmarier, M., Vanegas, J.P., Danguy, A., Schulman, C., Pasteels, J.L., Kiss, R.: Differential histochemical peanut agglutinin stain in benign and malignant human prostate tumors: relationship with prostatic specific antigen immunostain and nuclear DNA content. Human Pathol. 27, 1341–1347 (1996)Google Scholar
  17. 17.
    Zhang, S., Zhang, H.S., Cordon-Cardo, C., Reuter, V.E., Singhal, A.K., Lloyd, K.O., Livingston, P.O.: Selection of tumor antigens as targets for immune attack using immunohistochemistry: II. Blood group-related antigens. Int. J. Cancer 73, 50–56 (1997)PubMedGoogle Scholar
  18. 18.
    Cao, Y., Stosiek, P., Springer, G.F., Karsten, U.: Thomsen–Friedenreich-related carbohydrate antigens in normal adult human tissue: a systematic and comparative study. Histochem. Cell Biol. 106, 97–207 (1996)Google Scholar
  19. 19.
    Ghazizadeh, M., Oguro, T., Sasaki, Y., Aihara, K., Araki, T., Springer, G.F.: Immunohistochemical and ultrastructural localization of T antigen in ovarian tumors. Am. J. Clin. Pathol. 93, 315–321 (1990)PubMedGoogle Scholar
  20. 20.
    Sotozono, M.A., Okada, Y., Tsuji, T.: The Thomsen–Friedenreich antigen-related carbohydrate antigens in human gastric intestinal metaplasia and cancer. J. Histochem. Cytochem. 42, 1575–1584 (1994)PubMedGoogle Scholar
  21. 21.
    Baldus, S.E., Zirbes, T.K., Glossmann, J., Fromm, S., Hanisch, F.G., Monig, S.P., Schroder, W., Schneider, P.M., Flucke, U., Karsten, U., Thiele, J., Holscher, A.H., Dienes, H.P.: Immunoreactivity of monoclonal antibody BW835 represents a marker of progression and prognosis in early gastric cancer. Oncology 61, 147–155 (2001)PubMedGoogle Scholar
  22. 22.
    Moriyama, H., Nakano, H., Igawa, M., Nihira, H.: T antigen expression in benign hyperplasia and adenocarcinoma of the prostate. Urol. Int. 42, 120–123 (1987)PubMedCrossRefGoogle Scholar
  23. 23.
    Wolf, M.F., Ludwig, A., Fritz, P., Schumacher, K.: Increased expression of Thomsen–Friedenreich antigens during tumor progression in breast cancer patients. Tumour Biol. 9, 190–194 (1988)PubMedCrossRefGoogle Scholar
  24. 24.
    Langkilde, N.C., Wolf, H., Clausen, H., Kjeldsen, T., Orntoft, T.F.: Nuclear volume and expression of T-antigen, sialosyl-Tn-antigen, and Tn-antigen in carcinoma of the human bladder. Relation to tumor recurrence and progression. Cancer 69, 219–227 (1992)PubMedGoogle Scholar
  25. 25.
    Cao, Y., Karsten, U.R., Liebrich, W., Haensch, W., Springer, G.F., Schlag, P.M.: Expression of Thomsen–Friedenreich-related antigens in primary and metastatic colorectal carcinomas. A reevaluation. Cancer 76, 1700–1708 (1995)PubMedGoogle Scholar
  26. 26.
    Samuel, J., Longenecker, B.M.: Development of active specific immunotherapeutic agents based on cancer-associated mucins. Pharm. Biotechnol. 6, 875–890 (1995)PubMedGoogle Scholar
  27. 27.
    Springer, G.F., Tegtmeyer, H.: Origin of anti-Thomsen–Friedenreich (T) and Tn agglutinins in man and in White Leghorn chicks. Br. J. Haematol. 47, 453–460 (1981)PubMedGoogle Scholar
  28. 28.
    Kurtenkov, O., Miljukhina, L., Smorodin, J., Klaamas, K., Bovin, N., Ellamaa, M., Chuzmarov, V.: Natural IgM and IgG antibodies to Thomsen–Friedenreich (T) antigen in serum of patients with gastric cancer and blood donors–relation to Lewis (a,b) histo-blood group phenotype. Acta Oncol. 38, 939–943 (1999)PubMedGoogle Scholar
  29. 29.
    Adluri, S., Helling, F., Ogata, S., Zhang, S., Itzkowitz, S.H., Lloyd, K.O., Livingston, P.O.: Immunogenicity of synthetic TF-KLH (keyhole limpet hemocyanin) and sTn-KLH conjugates in colorectal carcinoma patients. Cancer Immunol. Immunother. 41, 185–192 (1995)PubMedGoogle Scholar
  30. 30.
    MacLean, G.D., Bowen-Yacyshyn, M.B., Samuel, J., Meikle, A., Stuart, G., Nation, J., Poppema, S., Jerry, M., Koganty, R., Wong, T., et al.: Active immunization of human ovarian cancer patients against a common carcinoma (Thomsen–Friedenreich) determinant using a synthetic carbohydrate antigen. J. Immunother. 11, 292–305 (1992)PubMedCrossRefGoogle Scholar
  31. 31.
    Yacyshyn, M.B., Poppema, S., Berg, A., MacLean, G.D., Reddish, M.A., Meikle, A., Longenecker, B.M.: CD69+ and HLA-DR+ activation antigens on peripheral blood lymphocyte populations in metastatic breast and ovarian cancer patients: correlations with survival following active specific immunotherapy. Int J Cancer 61, 470–474 (1995)PubMedGoogle Scholar
  32. 32.
    Slovin, S.F., Ragupathi, G., Musselli, C., Fernandez, C., Diani, M., Verbel, D., Danishefsky, S., Livingston, P., Scher, H.I.: Thomsen–Friedenreich (TF) antigen as a target for prostate cancer vaccine: clinical trial results with TF cluster (c)-KLH plus QS21 conjugate vaccine in patients with biochemically relapsed prostate cancer. Cancer Immunol. Immunother. 54, 694–702 (2005)PubMedGoogle Scholar
  33. 33.
    Ragupathi, G.: Carbohydrate antigens as targets for active specific immunotherapy. Cancer Immunol. Immunother. 43, 152–7 (1996)PubMedGoogle Scholar
  34. 34.
    Xu, Y., Gendler, S.J., Franco, A.: Designer glycopeptides for cytotoxic T cell-based elimination of carcinomas. J. Exp. Med. 99, 707–16 (2004)Google Scholar
  35. 35.
    Kurtenkov, O., Klaamas, K., Rittenhouse-Olson, K., Vahter, L., Sergejev, B., Miljukhina, L., Shljapnikova, L.: IgG immune response to tumor-associated carbohydrate antigens (TF, Tn, alphaGal) in patients with breast cancer: impact of neoadjuvant chemotherapy and relation to the survival. Exp. Oncol. 27, 136–140 (2005)PubMedGoogle Scholar
  36. 36.
    Ju, T., Brewer, K., D’Souza, A., Cummings, R.D., Canfield, W.M.: Cloning and expression of human core 1 beta1,3-galactosyltransferase. J. Biol. Chem. 277, 178–186 (2002)PubMedGoogle Scholar
  37. 37.
    Ju, T., Cummings, R.D., Canfield, W.M.: Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J. Biol. Chem. 277, 169–77 (2002)PubMedGoogle Scholar
  38. 38.
    Lowe, J.B., Marth, J.D.: A genetic approach to Mammalian glycan function. Annu. Rev. Biochem. 72, 643–91 (2003)PubMedGoogle Scholar
  39. 39.
    Dahiya, R., Itzkowitz, S.H., Byrd, J.C., Kim, Y.S.: Mucin oligosaccharide biosynthesis in human colonic cancerous tissues and cell lines. Cancer 70, 1467–1476 (1992)PubMedGoogle Scholar
  40. 40.
    Brockhausen, I., Yang, J.M., Burchell, J., Whitehouse, C., Taylor-Papadimitriou, J.: Mechanisms underlying aberrant glycosylation of MUC1 mucin in breast cancer cells. Eur J Biochem 233, 607–17 (1995)PubMedGoogle Scholar
  41. 41.
    Whitehouse, C., Burchell, J., Gschmeissner, S., Brockhausen, I., Lloyd, K.O.: Taylor-Papadimitriou J. A transfected sialyltransferase that is elevated in breast cancer and localizes to the medial/trans-Golgi apparatus inhibits the development of core-2 based O-glycans. J Cell Biol 137, 1229–1241 (1997)PubMedGoogle Scholar
  42. 42.
    Martinez-Menarguez, J.A., Ballesta, J., Aviles, M., Madrid, J.F., Castells, M.T.: Influence of sulphate groups in the binding of peanut agglutinin. Histochemical demonstration with light- and electron-microscopy. Histochem J 24, 207–216 (1992)PubMedGoogle Scholar
  43. 43.
    Kuhns, W., Jain, R.K., Matta, K.L., Paulsen, H., Baker, M.A., Geyer, R., Brochhausen, I.: Characterization of a novel mucin suphotransferase activity synthesizing suphated O-glycan core 1, 3-suphate-galβ1-GalNAcα-R. Glycobiology 5, 689–697 (1995)PubMedGoogle Scholar
  44. 44.
    Kumamoto, K., Goto, Y., Sekikawa, K., Takenoshita, S., Ishida, N., Kawakita, M., Kannagi, R.: Increased expression of UDP-galactose transporter messenger RNA in human colon cancer tissues and its implication in synthesis of Thomsen–Friedenreich antigen and sialyl Lewis A/X determinants. Cancer Res. 61, 4620–4627 (2001)PubMedGoogle Scholar
  45. 45.
    Rivinoja, A., Kokkonen, N., Kellokumpu, I., Kellokumpu, S.: Elevated Golgi pH in breast and colorectal cancer cells correlates with the expression of oncofetal carbohydrate T-antigen. J. Cell Physiol. 208, 167–74 (2006)PubMedGoogle Scholar
  46. 46.
    Axelsson, M.A., Karlsson N.G., Steel D.M., Ouwendijk J., Nilsson T., Hansson G.C.: Neutralization of pH in the Golgi apparatus causes redistribution of glycosyltransferases and changes in the O-glycosylation of mucins. Glycobiology 11, 633–644 (2001)PubMedGoogle Scholar
  47. 47.
    Ju, T., Cummings, R.D.: A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl. Acad. Sci. U.S.A. 99, 16613–16618 (2002)PubMedGoogle Scholar
  48. 48.
    Ju, T., Cummings, R.D.: Protein glycosylation: chaperone mutation in Tn syndrome. Nature 437, 1252 (2005)PubMedGoogle Scholar
  49. 49.
    Schietinger, A., Philip M., Yoshida B.A., Azadi P., Liu H., Meredith S.C., Schreiber H.: A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 314, 304-308 (2006)PubMedGoogle Scholar
  50. 50.
    Ryder, S.D., Smith, J.A., Rhodes J.M.: Peanut lectin is a mitogen for normal human colonic epithelium and HT29 colorectal cancer cells. J. Natl. Cancer Inst. 84, 1410–1416 (1992)PubMedGoogle Scholar
  51. 51.
    Ryder, S.D., Parker, N., Eccleston, D., Haqqani, M.T., Rhodes J.M.: Peanut lectin (PNA) stimulates proliferation in colonic explants from patients with ulcerative colitis, Crohn’s disease and colonic polyps. Gastroenterology 106, 117–124 (1994)PubMedGoogle Scholar
  52. 52.
    Yu, L.G., Milton, J.D., Fernig, D.G., Rhodes, J.M.: Opposite effects on human colon cancer cell proliferation of two dietary Thomsen–Friedenreich antigen-binding lectins. J. Cell. Physiol. 186, 282–287 (2001)PubMedGoogle Scholar
  53. 53.
    Yu, L.G., Fernig, D.G., White, M.R.H., Spiller, D.G., Evans, R.C., Appleton, P., Grierson I., Smith J.A., Davies H., Gerasimenko O.V., Peterson O.H., Milton, J.D., Rhodes, J.M.: Edible mushroom (Agaricus bisporus) lectin, which reversibly inhibits epithelial cell proliferation, blocks NLS-dependent nuclear protein import. J. Biol. Chem. 274, 4890–4899 (1999)PubMedGoogle Scholar
  54. 54.
    Yu, L., Fernig, D.G., Smith, J.A., Milton, J.D., Rhodes, J.M.: Reversible inhibition of proliferation of epithelial cell lines by Agaricus bisporus (edible mushroom) lectin. Cancer Res. 53, 4627–4632 (1993)PubMedGoogle Scholar
  55. 55.
    Pusztai, A.: Plant Lectins, pp. 78–95. Cambridge University Press, Cambridge, UK (1991)Google Scholar
  56. 56.
    Evans, R.C., Fear, S., Ashby, D., Hackett. A., Williams, E., Van der Vliet M., Dunstan F.D.J., Rhodes J.M.: Diet and colorectal cancer: an investigation of the lectin/galactose hypothesis. Gastroenterology 122, 1784–1792 (2002)PubMedGoogle Scholar
  57. 57.
    Liu, F.T., Rabinovich, G.A.: Galectins as modulators of tumour progression. Nat. Rev. Cancer. 5, 29–41 (2005)PubMedGoogle Scholar
  58. 58.
    Danguy, A., Camby, I., Kiss, R.: Galectins and cancer. Biochim. Biophys. Acta 1572, 285–293 (2002)PubMedGoogle Scholar
  59. 59.
    Van den Brule, F., Califice, S., Castronovo, V.: Expression of galectins in cancer: a critical review. Glycoconj. J. 19, 537–542 (2004)PubMedGoogle Scholar
  60. 60.
    Califice, S., Castronovo, V., Van Den Brule, F.: Galectin-3 and cancer. Int. J. Oncol. 25, 983–992 (2004)PubMedGoogle Scholar
  61. 61.
    Takenaka, Y., Fukumori, T., Raz, A.: Galectin-3 and metastasis. Glycoconj. J. 19, 543–549 (2004)PubMedGoogle Scholar
  62. 62.
    Iurisci, I., Tinari, N., Natoli, C., Angelucci, D., Cianchetti, E., Iacobelli, S.: Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin. Cancer Res. 6, 1389–1393 (2000)PubMedGoogle Scholar
  63. 63.
    Vereecken, P., Zouaoui Boudjeltia, K., Debray, C., Awada, A., Legssyer, I., Sales, F., Petein, M., Vanhaeverbeek, M., Ghanem, G., Heenen, M.: High serum galectin-3 in advanced melanoma: preliminary results. Clin. Exp. Dermatol. 31, 105–109 (2006)PubMedGoogle Scholar
  64. 64.
    Leffler, H., Barondes, S.H.: Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian beta-galactosides. J Biol Chem 261, 10119–10126 (1986)PubMedGoogle Scholar
  65. 65.
    Sparrow, C.P., Leffler, H., Barondes, S.H.: Multiple soluble beta-galactoside-binding lectins from human lung. J. Biol. Chem. 262, 7383–7390 (1987)PubMedGoogle Scholar
  66. 66.
    Glinsky, V.V., Glinsky, G.V., Huflejt, M.E., Glinskii, O.V., Deutscher, S.L., Quinn, T.P.: The role of Thomsen–Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res. 61, 4851–4857 (2001)PubMedGoogle Scholar
  67. 67.
    Glinsky, V.V., Huflejt, M.E., Glinsky, G.V., Deutscher, S.L., Quinn, T.P.: Effects of Thomsen–Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res. 60, 2584–2588 (2000)PubMedGoogle Scholar
  68. 68.
    Sangeetha, S.R., Appukuttan, P.S.: IgA1 is the premier serum glycoprotein recognized by human galectin-1 since T antigen (Galbeta1–>3GalNAc-) is far superior to non-repeating N-acetyl lactosamine as ligand. Int. J. Biol. Macromol. 35, 269–276 (2005)PubMedGoogle Scholar
  69. 69.
    Jeschke, U., Karsten, U., Wiest, I., Schulze, S., Kuhn, C., Friese, K., Walzel, H.: Binding of galectin-1 (gal-1) to the Thomsen–Friedenreich (TF) antigen on trophoblast cells and inhibition of proliferation of trophoblast tumor cells in vitro by gal-1 or an anti-TF antibody. Histochem. Cell Biol. 126, 437–444 (2006)PubMedGoogle Scholar
  70. 70.
    Yu, L.G., Andrews, N., Zhao, Q., McKean, D., Williams, J.F., Connor, L.J., Gerosimenko, O.V., Hilkens, J., Hirabayashi, J., Kasai, K., Rhodes, J.M.: Galectin-3 interaction with Thomsen–Friedenreich oligosaccharide on cancer-associated MUC1 causes increased cancer cell-endothelial adhesion. J. Biol. Chem. 282, 773–781 (2007)PubMedGoogle Scholar
  71. 71.
    Perillo, N.L., Marcus, M.E., Baum, L.G.: Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J. Mol. Med. 76, 402–412 (1998)PubMedGoogle Scholar
  72. 72.
    Inohara, H., Akahani, S., Raz, A.: Galectin-3 stimulates cell proliferation. Exp. Cell Res. 245, 294–302 (1998)PubMedGoogle Scholar
  73. 73.
    Maeda, N., Kawada, N., Seki, S., Arakawa, T., Ikeda, K., Iwao, H., Okuyama, H., Hirabayashi, J., Kasai, K., Yoshizato, K.: Stimulation of proliferation of rat hepatic stellate cells by galectin-1 and galectin-3 through different intracellular signaling pathways. J. Biol. Chem. 278, 18938–18944 (2003)PubMedGoogle Scholar
  74. 74.
    Honjo, Y., Nangia-Makker, P., Inohara, H., Raz, A.: Down-regulation of galectin-3 suppresses tumorigenicity of human breast carcinoma cells. Clin. Cancer Res. 7, 661–668 (2001)PubMedGoogle Scholar
  75. 75.
    Biron, V.A., Iglesias, M.M., Troncoso, M.F., Besio-Moreno, M., Patrignani, Z.J., Pignataro, O.P., Wolfenstein-Todel, C.: Galectin-1 biphasic growth regulation of Leydig tumor cells. Glycobiology 16, 810–821 (2006)PubMedGoogle Scholar
  76. 76.
    Kopitz, J., von Reitzenstein, C., Andre, S., Kaltner, H., Uhl, J., Ehemann, V., Cantz, M., Gabius, H.J.: Negative regulation of neuroblastoma cell growth by carbohydrate-dependent surface binding of galectin-1 and functional divergence from galectin-3. J. Biol. Chem. 276, 35917–35923 (2001)PubMedGoogle Scholar
  77. 77.
    Hammer, D.A.: Leukocyte adhesion: what’s the catch? Curr. Biol. 15, R96–R99 (2005)Google Scholar
  78. 78.
    Kannagi, R.: Regulatory roles of carbohydrate ligands for selectins in the homing of lymphocytes. Curr. Opin. Struck. Biol. 12, 599–608 (2002)Google Scholar
  79. 79.
    Krause, T., Turner, G.A.: Are selectins involved in metastasis? Clin. Exp. Metastasis 17, 183–192 (1999)PubMedGoogle Scholar
  80. 80.
    Nair, K.S., Naidoo, R., Chetty, R.: Expression of cell adhesion molecules in oesophageal carcinoma and its prognostic value. J. Clin. Pathol. 58, 343–351 (2005)PubMedGoogle Scholar
  81. 81.
    Kannagi, R., Izawa, M., Koike, T., Miyazaki, K., Kimura, N.: Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 95, 377–384 (2004)PubMedGoogle Scholar
  82. 82.
    Giavazzi, R., Foppolo, M., Dossi, R., Remuzzi, A.: Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J. Clin. Invest. 92, 3038–3044 (1993)PubMedCrossRefGoogle Scholar
  83. 83.
    Khaldoyanidi, S.K., Glinsky, V.V., Sikora, L., Glinskii, A.B., Mossine, V.V., Quinn, T.P., Glinsky, G.V., Sriramarao, P.: MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen–Friedenreich antigen-galectin-3 interactions. J. Biol. Chem. 278, 4127–4134 (2003)PubMedGoogle Scholar
  84. 84.
    Thorlacius, H., Prieto, J., Raud, J., Gautam, N., Patarroyo, M., Hedqvist, P., Lindbom, L.: Tumor cell arrest in the microcirculation: lack of evidence for a leukocyte-like rolling adhesive interaction with vascular endothelium in vivo. Clin. Immunol. Immunopathol. 83, 68–76 (1997)PubMedGoogle Scholar
  85. 85.
    Glinsky, V.V., Glinsky, G.V., Glinskii, O.V., Huxley, V.H., Turk, J.R., Mossine, V.V., Deutscher, S.L., Pienta, K.J., Quinn, T.P.: Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res. 63, 3805–3811 (2003)PubMedGoogle Scholar
  86. 86.
    Zou, J., Glinsky, V.V., Landon, L.A., Matthews, L., Deutscher, S.L.: Peptides specific to the galectin-3 carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion. Carcinogenesis 26, 309–318 (2005)PubMedGoogle Scholar
  87. 87.
    Heimburg, J., Yan, J., Morey, S., Glinskii, O.V., Huxley, V.H., Wild, L., Klick, R., Roy, R., Glinsky, V.V., Rittenhouse-Olson K.: Inhibition of spontaneous breast cancer metastasis by anti-Thomsen–Friedenreich antigen monoclonal antibody JAA-F11. Neoplasia 8, 939–948 (2006)PubMedGoogle Scholar
  88. 88.
    Glinskii, O.V., Huxley, V.H., Glinsky, G.V., Pienta, K.J., Raz, A., Glinsky, V.V.: Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7, 522–527 (2005)PubMedGoogle Scholar
  89. 89.
    Shigeoka, H., Karsten, U., Okuno, K., Yasutomi, M.: Inhibition of liver metastases from neuraminidase-treated colon 26 cells by an anti-Thomsen–Friedenreich-specific monoclonal antibody. Tumour Biol. 20, 139–146 (1999)PubMedGoogle Scholar
  90. 90.
    Shekhar, M.P., Nangia-Makker, P., Tait, L., Miller, F., Raz, A.: Alterations in galectin-3 expression and distribution correlate with breast cancer progression: functional analysis of galectin-3 in breast epithelial–endothelial interactions. Am. J. Pathol. 165, 1931–1941 (2004)PubMedGoogle Scholar
  91. 91.
    Singh, R., Campbell, B.J., Yu, L.G., Fernig, D.G., Milton, J.D., Goodlad, R.A., FitzGerald, A.J., Rhodes, JM.: Cell surface-expressed Thomsen–Friedenreich antigen in colon cancer is predominantly carried on high molecular weight splice variants of CD44. Glycobiology 11, 587–592 (2001)PubMedGoogle Scholar
  92. 92.
    Baldus, S.E., Hanisch, F.G., Kotlarek, G.M., Zirbes, T.K., Thiele, J., Isenber, J., Karsten, U.R., Devine, P.L., Dienes, HP.: Coexpression of MUC1 mucin peptide core and the Thomsen–Friedenreich antigen in colorectal neoplasms. Cancer 82, 1019–1027 (1998)PubMedGoogle Scholar
  93. 93.
    Jothy, S.: CD44 and its partners in metastasis. Clin. Exp. Metastasis 20, 195–201 (2003)PubMedGoogle Scholar
  94. 94.
    Heider, K.H., Kuthan, H., Stehle, G., Munzert, G.: CD44v6: a target for antibody-based cancer therapy. Cancer. Immunol. Immunother. 53, 567–579 (2004)PubMedGoogle Scholar
  95. 95.
    Bresalier, R.S., Niv, Y., Byrd, J.C., Duh, Q.Y., Toribara, N.W., Rockwell, R.W., Dahiya, R., Kim, Y.S.: Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J. Clin. Invest. 87, 1037–1045 (1991)PubMedGoogle Scholar
  96. 96.
    Nakamori, S., Ota, DM., Cleary, K.R., Shirotani, K., Irimura, T.: MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology 106, 353–361 (1994)PubMedGoogle Scholar
  97. 97.
    Karsten, U., Von Mensdorff-Pouilly, S., Goletz, S.: What makes MUC1 a tumor antigen? Tumour Biol. 26, 217–20 (2005)PubMedGoogle Scholar
  98. 98.
    Ponta, H., Sherman, L., Herrlich, P.A.: CD44: from adhesion molecules to signalling regulators. Nat. Rev., Mol. Cell Biol. 4, 33–45 (2003)Google Scholar
  99. 99.
    Zöller, M.: CD44 physiological expression of distinctisoforms as evidence for organ-specific metastatsis formation. J. Mol. Med. 73, 425 (1995)PubMedGoogle Scholar
  100. 100.
    Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller M., Haussmann, I., Matzku, S., Wenzel, A., Ponta, H., Herrlich, P. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65, 13–24 (1991)Google Scholar
  101. 101.
    Reeder, J.A., Gotley, D.C., Walsh, M.D., Fawcett, J., Antalis, T.M.: Expression of antisense CD44 variant 6 inhibits colorectal tumor metastasis and tumor growth in a wound environment. Cancer Res. 58, 3719–3726 (1998)PubMedGoogle Scholar
  102. 102.
    Taylor-Papadimitriou, J., Burchell, J., Miles, D.W., Dalziel, M.: MUC1 and cancer. Biochim. Biophys. Acta 1455, 301–313 (1999)PubMedGoogle Scholar
  103. 103.
    Hilkens, J., Ligtenberg, M.J., Vos, H.L., Litvinov, S.V.: Cell membrane-associated mucins and their adhesion-modulating property. Trends. Biochem. Sci. 17, 359–363 (1992)PubMedGoogle Scholar
  104. 104.
    Lloyd, K.O., Burchell, J., Kudryashov, V., Yin, B.W., Taylor-Papadimitriou, J.: Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines. Demonstration of simpler and fewer glycan chains in tumor cells. J. Biol. Chem. 271, 33325–33334 (1996)PubMedGoogle Scholar
  105. 105.
    Karsten, U., Butschak, G., Cao, Y., Goletz, S., Hanisch, F.G.: A new monoclonal antibody (A78-G/A7) to the Thomsen–Friedenreich pan-tumor antigen. Hybridoma 14, 37–44 (1995)PubMedCrossRefGoogle Scholar
  106. 106.
    Hanisch, F.G., Stadie, T., Bosslet, K.: Monoclonal antibody BW835 defines a site-specific Thomsen–Friedenreich disaccharide linked to threonine within the VTSA motif of MUC1 tandem repeats. Cancer Res. 55, 4036–4040 (1995)PubMedGoogle Scholar
  107. 107.
    Baldus, S.E., Hanisch, F.G., Monaca, E., Karsten, U.R., Zirbes, T.K., Thiele J., Dienes H.P.: Immunoreactivity of Thomsen–Friedenreich (TF) antigen in human neoplasms: the importance of carrier–specific glycotope expression on MUC1. Histol. Histopathol. 14, 1153–1158 (1999)PubMedGoogle Scholar
  108. 108.
    Bhavanandan, V.P., Umemoto, J., Davidson, E.A.: Characterization of an endo-alpha-N-acetyl galactosaminidase from Diplococcus pneumoniae. Biochem. Biophys. Res. Commun. 70, 738–745 (1976)PubMedGoogle Scholar
  109. 109.
    Baldus, S.E., Wienand, J.R., Werner, J.P., Landsberg, S., Drebber, U., Hanisch, F.G., Dienes, H.P.: Expression of MUC1, MUC2 and oligosaccharide epitopes in breast cancer: prognostic significance of a sialylated MUC1 epitope. Int. J. Oncol. 27, 1289–1297 (2005)PubMedGoogle Scholar
  110. 110.
    Becker, J.W., Erickson, H.P., Hoffman, S., Cunningham, B.A., Edelman, G.M.: Topology of cell adhesion molecules. Proc. Natl. Acad. Sci. U. S. A. 86, 1088–1092 (1989)PubMedGoogle Scholar
  111. 111.
    Ligtenberg, M.J., Buijs, F., Vos, H.L., Hilkens, J.: Suppression of cellular aggregation by high levels of episialin. Cancer Res. 52, 2318–2324 (1992)PubMedGoogle Scholar
  112. 112.
    Wesseling, J., Van der Valk, S.W., Hilkens, J.: A mechanism for inhibition of E-cadherin-mediated cell–cell adhesion by the membrane-associated mucin episialin/MUC1. Mol. Biol. Cell 7, 565–577 (1996)PubMedGoogle Scholar
  113. 113.
    Kondo, K., Kohno, N., Yokoyama, A., Hiwada, K.: Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res. 58, 2014–2019 (1998)PubMedGoogle Scholar
  114. 114.
    Li, Y.S., Kaneko, M., Sakamoto, D.G., Takeshima, Y., Inai, K.: The reversed apical pattern of MUC1 expression is characteristics of invasive micropapillary carcinoma of the breast. Breast Cancer 13, 58–63 (2006)PubMedGoogle Scholar
  115. 115.
    Xia, L., Ju, T., Westmuckett, A., An, G., Ivanciu, L., McDaniel, J.M., Lupu, F., Cummings, R.D., McEver, R.P.: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J. Cell Biol. 164, 451–459 (2004)PubMedGoogle Scholar
  116. 116.
    Nangia-Makker, P., Hogan, V., Honjo, Y., Baccarini, S., Tait, L., Bresalier, R., Raz, A.: Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J. Natl. Cancer Inst. 94, 1854–1862 (2002)PubMedGoogle Scholar
  117. 117.
    Nangia-Makker, P, Honjo, Y, Sarvis, R, Akahani, S, Hogan, V, Pienta, KJ, Raz, A.: Galectin-3 induces endothelial cell morphogenesis and angiogenesis. Am. J. Pathol. 156, 899–909 (2000)PubMedGoogle Scholar
  118. 118.
    Thijssen, V.L., Postel, R., Brandwijk, R.J., Dings, R.P., Nesmelova, I., Satijn, S., Verhofstad, N., Nakabeppu, Y., Baum, L.G., Bakkers, J., Mayo, K.H., Poirier, F., Griffioen, A.W.: Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc. Natl. Acad. Sci. U.S.A. 103, 15975–15980 (2006)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.The Henry Wellcome Laboratory of Molecular and Cellular Gastroenterology, School of Clinical ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations