Glycoconjugate Journal

, Volume 24, Issue 2–3, pp 157–165 | Cite as

Conjugation of oligosaccharides by reductive amination to amine modified chondroitin oligomer and γ-cyclodextrin

  • Krista Weikkolainen
  • Olli Aitio
  • Maria Blomqvist
  • Jari Natunen
  • Jari Helin


Carbohydrates present on cell surfaces participate in numerous biological recognition phenomena including cell–cell interactions, cancer metastasis and pathogen invasion. Therefore, synthetic carbohydrates have a potential to act as pharmaceutical substances for treatment of various pathological phenomena by inhibiting specifically the interaction between cell surface carbohydrates and their protein receptors (lectins). However, the inherently low affinity of carbohydrate-protein interactions has often been an obstacle for successful generation of carbohydrate based pharmaceuticals. Multivalent glycoconjugates, i.e. structures carrying several copies of the active carbohydrate sequence in a carrier molecule, have been constructed to overcome this problem. Here we present two novel types of multivalent carbohydrate conjugates based on chondroitin oligomer and cyclodextrin carriers. These carriers were modified to express primary amino groups, and oligosaccharides were then bound to carrier molecules by reductive amination. Multivalent conjugates were produced using the human milk type oligosaccharides LNDFH I (Lewis-b hexasaccharide), LNnT, and GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc.


Chondroitin sulphate A γ-CD Reductive amination Multivalent oligosaccharides 



chondroitin 14-mer


cytidine 5′-monophospho-5-N-acetyl neuraminic acid)


chondroitin sulphate




1,3-diaminopropane amidated chondroitin 14-mer


oxidized and 1,3-diaminopropane amidated γ-cyclodextrin




dimethyl sulphoxide








2-(1H-bentsotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphatel






matrix-assisted laser desorption-ionization time-of-flight mass spectrometry


morpholinoethane sulphonate


oxidized γ-cyclodextrin




tetramethylpiperidine-1-oxy radical



An early contribution of Biotie Therapies Corp. is gratefully acknowledged. We thank Dr. Ritva Niemelä and Dr. Anne Olonen, and Tero Satomaa for critical reading of the manuscript. This work was supported by The Technology Development Center of Finland, the Emil Aaltonen Foundation, and Foundation of Magnus Ehrnrooth.


  1. 1.
    Lis, H., Sharon, N.: Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev. 98, 637–674 (1998)PubMedCrossRefGoogle Scholar
  2. 2.
    Varki, A.: Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3, 97–130 (1993)PubMedCrossRefGoogle Scholar
  3. 3.
    Dwek, R.A.: Glycobiology: Toward understanding the function of sugars. Chem. Rev. 96, 683–720 (1996)PubMedCrossRefGoogle Scholar
  4. 4.
    Gabius, H.J.: Animal lectins. Eur. J. Biochem. 243, 543–576 (1997)PubMedCrossRefGoogle Scholar
  5. 5.
    Davis, B.G.: Recent developments in oligosaccharide synthesis. J. Chem. Soc. Perkin Trans. 1, 2137–2160 (2000)CrossRefGoogle Scholar
  6. 6.
    Mysore, J.V., Wigginton, T., Simon, P.M., Zopf, D., Heman-Ackah, L.M., Dubois, A.: Treatment of Helicobacter pylori infection in Rhesus monkeys using a novel antiadhesion compound. Gastroenterology 117, 1316–1325 (1999)PubMedCrossRefGoogle Scholar
  7. 7.
    Gambaryan, A.S., Tuzikov, A.B., Chinarev, A.A., Juneja, L.R., Bovin, N.V., Matrosovich, M.N.: Polymeric inhibitor of influenza virus attachment protects mice from experimental influenza infection. Antiviral. Res. 55, 201–205 (2002)PubMedCrossRefGoogle Scholar
  8. 8.
    Bundle, D.R., Young, N.M.: Carbohydrate-protein interactions in antibodies and lectins. Curr. Opin. Struct. Biol. 2, 666–673 (1992)CrossRefGoogle Scholar
  9. 9.
    Lee, Y.C., Lee, R.T.: Carbohydrate-protein interactions: Basis of glycobiology. Acc. Chem. Res. 28, 321–327 (1995)CrossRefGoogle Scholar
  10. 10.
    Kiessling, L.L., Pohl, N.L.: Strength in numbers: Non-natural polyvalent carbohydrate derivatives. Chem. Biol. 3, 71–77 (1996)PubMedCrossRefGoogle Scholar
  11. 11.
    Mammen, M., Choi, S.-K., Whitesides, G.M.: Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem-Int. Edit. 37, 2754–2794 (1998)CrossRefGoogle Scholar
  12. 12.
    Roy, R., Park, W.K.C., Srivastava, O.P., Foxall, C.: Combined glycomimetic and multivalent strategies for the design of potent selectin antagonists. Bioorg. Med. Chem. Lett. 6, 1399–1402 (1996)CrossRefGoogle Scholar
  13. 13.
    Kitov, P.I., Sadowska, J.M., Mulvey, G., Armstrong, G.D., Ling, H., Pannu, N.S., Read, R.J., Bundle, D.R.: Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403, 669–672 (2000)PubMedCrossRefGoogle Scholar
  14. 14.
    Turunen, J.P., Majuri, M.L., Seppo, A., Tiisala, S., Paavonen, T., Miyasaka, M., Lemstrom, K., Penttila, L., Renkonen, O., Renkonen, R.: De novo expression of endothelial sialyl Lewis(a) and sialyl Lewis(x) during cardiac transplant rejection: Superior capacity of a tetravalent sialyl Lewis(x) oligosaccharide in inhibiting L-selectin-dependent lymphocyte adhesion. J. Exp. Med. 182, 1133–1141 (1995)PubMedCrossRefGoogle Scholar
  15. 15.
    Davis, B.G.: Recent developments in glycoconjugates. J. Chem. Soc. Perkin Trans. 1, 3215–3237 (1999)CrossRefGoogle Scholar
  16. 16.
    Okada, M.: Molecular design and syntheses of glycopolymers. Prog. Polym. Sci. 26, 67–104 (2001)CrossRefGoogle Scholar
  17. 17.
    Matthews, O.A., Shipway, A.N., Stoddart, J.F.: Dendrimers-branching out from curiosities into new technologies. Prog. Polym. Sci. 23, 1–56 (1998)CrossRefGoogle Scholar
  18. 18.
    Kim, Y., Zimmerman, S.C.: Applications of dendrimers in bio-organic chemistry. Curr. Opin. Chem. Biol. 2, 733–742 (1998)PubMedCrossRefGoogle Scholar
  19. 19.
    Bosman, A.W., Janssen, H.M., Meijer, E.W.: About dendrimers: Structure, physical properties, and applications. Chem. Rev. 99, 1665–1688 (1999)PubMedCrossRefGoogle Scholar
  20. 20.
    Fischer, M., Vögtle, F.: Dendrimers: From design to application—a progress report. Angew. Chem. Int. Edit. 38, 884–905 (1999)CrossRefGoogle Scholar
  21. 21.
    Soltés, L., Mendichi, R., Machovà, E., Steiner, B., Alföldi, J., Sasinkovà, V., Bystrický, S., Balog, K.: Cyclodextrin derivative of hyaluronan. Carbohydr. Polym. 39, 17–24 (1999)CrossRefGoogle Scholar
  22. 22.
    Sakagami, M., Horie, K., Nakamoto, K., Kawaguchi, T., Hamana, H.: Synthesis of sialyl Lewis X-polysaccharide conjugates. Chem. Pharm. Bull. (Tokyo) 48, 1256–1263 (2000)Google Scholar
  23. 23.
    Fulton, D.A., Stoddart, J.F.: Neoglycoconjugates based on cyclodextrins and calixarenes. Bioconjug. Chem. 12, 655–672 (2001)PubMedCrossRefGoogle Scholar
  24. 24.
    Houseman, B.T., Mrksich, M.: Model systems for studying polyvalent carbohydrate binding interactions. Top. Curr. Chem. 218, 1–44 (2002)CrossRefGoogle Scholar
  25. 25.
    Ortiz Mellet, C., Defaye, J., Fernández, J.M.G.: Multivalent cyclooligosaccharides: Versatile carbohydrate clusters with dual role as molecular receptors and lectin ligands. Chem. Eur. J. 8, 1982–1990 (2002)CrossRefGoogle Scholar
  26. 26.
    Nagasawa, K., Inoue, Y., Tokuyasu T.: An improved method for the preparation of chondroitin by solvolytic desulfation of chondroitin sulfates. J. Biochem. (Tokyo) 86, 1323–1329 (1979)Google Scholar
  27. 27.
    Fraschini, C., Vignon, M.R.: Selective oxidation of primary alcohol groups of beta-cyclodextrin mediated by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO). Carbohydr. Res. 328, 585–589 (2000)PubMedCrossRefGoogle Scholar
  28. 28.
    Sekiya, S., Wada, Y., Tanaka, K.: Derivatization for stabilizing sialic acids in MALDI-MS. Anal. Chem. 77, 4962–4968 (2005)PubMedCrossRefGoogle Scholar
  29. 29.
    Baisch, G., Ohrlein, R.: Glycosyl-transferase catalyzed assemblage of sialyl-Lewis(x)-saccharopeptides. Bioorg. Med. Chem. 6, 1673–1682 (1998)PubMedCrossRefGoogle Scholar
  30. 30.
    Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997)PubMedCrossRefGoogle Scholar
  31. 31.
    Crottet, P., Kim, Y.J., Varki, A.: Subsets of sialylated, sulfated mucins of diverse origins are recognized by L-selectin. Lack of evidence for unique oligosaccharide sequences mediating binding. Glycobiology 6, 191–208 (1996)PubMedCrossRefGoogle Scholar
  32. 32.
    Schengrund, C.L.: “Multivalent” saccharides: Development of new approaches for inhibiting the effects of glycosphingolipid-binding pathogens, Biochem. Pharmacol. 65, 699–707 (2003)PubMedCrossRefGoogle Scholar
  33. 33.
    Turnbull, W.B., Stoddart, J.F.: Design and synthesis of glycodendrimers, Rev. Mol. Biotechnol. 90, 231–255 (2002)CrossRefGoogle Scholar
  34. 34.
    Satomaa, T., Toppila, S., Helin, J., Aitio, O., DeVries, A.L., Renkonen, R., Renkonen, O.: Enzymatic synthesis of a tetravalent mucin-type sialyl lewis X glycopeptide that inhibits lymphocyte adhesion to lymph node high endothelial venules. In International Carbohydrate Symposium; Hamburg, Germany: Abstracts of the 20th International Carbohydrate Symposium (2000).Google Scholar
  35. 35.
    Renkonen, O., Toppila, S., Penttila, L., Salminen, H., Helin, J., Maaheimo, H., Costello, C.E., Turunen, J.P., Renkonen, R.: Synthesis of a new nanomolar saccharide inhibitor of lymphocyte adhesion: Different polylactosamine backbones present multiple sialyl Lewis x determinants to L-selectin in high-affinity mode. Glycobiology 7, 453–461 (1997)PubMedCrossRefGoogle Scholar
  36. 36.
    Ohta, T., Miura, N., Fujitani, N., Nakajima, F., Niikura, K., Sadamoto, R., Guo, C.-T., Suzuki, T., Suzuki, Y., Monde, K., Nishimura, S.-I.: Glycotentacles: Synthesis of cyclic glycopeptides, toward a tailored blocker of influenza virus hemagglutinin. Angew. Chem. Int. Edit. 42, 5186–5189 (2003)CrossRefGoogle Scholar
  37. 37.
    Furuike, T., Aiba, S., Nishimura, S.-I.: A highly practical synthesis of cyclodextrin-based glycoclusters having enchanced affinity with lectins. Tetrahedron 56, 9909–9915 (2000)CrossRefGoogle Scholar
  38. 38.
    Ichikawa, M., Woods, A.S., Mo, H., Goldstein, I.J., Ichikawa, Y.: Simple preparation of multi-valent cyclodextrin-carbohydrate conjugates. Tetrahedron: Asymmetry 11, 389–392 (2000)CrossRefGoogle Scholar
  39. 39.
    Andre, S., Kaltner, H., Furuike, T., Nishimura, S., Gabius, H.J.: Persubstituted cyclodextrin-based glycoclusters as inhibitors of protein-carbohydrate recognition using purified plant and mammalian lectins and wild-type and lectin-gene-transfected tumor cells as targets. Bioconjug. Chem. 15, 87–98 (2004)Google Scholar
  40. 40.
    Boren, T., Falk, P., Roth, K.A., Larson, G., Normark, S.: Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262, 1892–1895 (1993)PubMedCrossRefGoogle Scholar
  41. 41.
    Miller-Podraza, H., Lanne, B., Angstrom, J., Teneberg, S., Milh, M.A., Jovall, P.A., Karlsson, H., Karlsson, K.A.: Novel binding epitope for Helicobacter pylori found in neolacto carbohydrate chains: Structure and cross-binding properties. J. Biol. Chem. 280, 19695–19703 (2005)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Krista Weikkolainen
    • 1
  • Olli Aitio
    • 2
  • Maria Blomqvist
    • 3
  • Jari Natunen
    • 3
  • Jari Helin
    • 3
  1. 1.Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Drug Discovery and Development Technology CenterUniversity of HelsinkiHelsinkiFinland
  3. 3.Glykos Finland Ltd.HelsinkiFinland

Personalised recommendations