Glycoconjugate Journal

, Volume 23, Issue 3–4, pp 167–173 | Cite as

Altered expression and glycosylation of plasma proteins in rheumatoid arthritis

  • Sunil K. Raghav
  • Bhawna Gupta
  • Charu Agrawal
  • Ashish Saroha
  • Rakha H. Das
  • Ved P. Chaturvedi
  • Hasi R. Das


Altered glycosylation of plasma proteins has been directly implicated in the pathogenesis of rheumatoid arthritis (RA). The present study investigated the changes in the Concanavalin-A (Con-A)-bound plasma proteins in the RA patients in comparison to that of the healthy controls. Two proteins (MW ∼32 kDa and ∼62 kDa) showed an alteration in expression while an altered monosaccharide profile (high mannose) was observed in the ∼62 kDa protein in the samples collected from RA patients. The 2-dimensional polyacrylamide gel electrophoresis analysis of the Con-A-bound plasma samples showed a large number of protein spots, a few of which were differentially expressed in the RA patients. Some unidentified proteins were detected in the RA patients which were absent in the control samples. The present study, therefore, enunciates the role of carbohydrates as well as that of the acute phase response in the disease pathogenesis.


Rheumatoid arthritis Concanavalin A Altered glycosylation Plasma proteins 2-dimensional gel electrophoresis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tokuhiro, S., Yamada, R., Chang, X., Suzuki, A., Kochi, Y., Sawada, T., Suzuki, M., Nagasaki, M., Ohtsuki, M., Ono, M., Furukawa, H., Nagashima, M., Yoshino, S., Mabuchi, A., Sekine, A., Saito, S., Takahashi, A., Tsunoda, T., Nakamura, Y., Yamamoto, K.: An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 35, 341–348 (2003)CrossRefPubMedGoogle Scholar
  2. 2.
    Suzuki, A., Yamada, R., Chang, X., Tokuhiro, S., Sawada, T., Suzuki, M., Nagasaki, M., Nakayama-Hamada, M., Kawaida, R., Ono, M., Ohtsuki, M., Furukawa, H., Yoshino, S., Yukioka, M., Tohma, S., Matsubara, T., Wakitani, S., Teshima, R., Nishioka, Y., Sekine, A., Iida, A., Takahashi, A., Tsunoda, T., Nakamura, Y., Yamamoto, K.: Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 34, 395–402 (2003)CrossRefPubMedGoogle Scholar
  3. 3.
    Agrawal, C., Raghav, S.K., Gupta, B., Goswami, K., Das, R.H., Chaturvedi, V.P., Das, H.R.: Tumour necrosis factor-α microsatellite polymorphism association with rheumatoid arthritis in Indian population. Arch. Med. Res. 36, 555–559 (2005)CrossRefPubMedGoogle Scholar
  4. 4.
    Dwek, R.A., Butters, T.D., Platt, F.M., Zitzmann, N.: Targeting glycosylation as a therapeutic approach. Nat. Rev. Drug. Discov. 1, 65–75 (2002)CrossRefPubMedGoogle Scholar
  5. 5.
    Bond, A., Alavi, A., Axford, J.S., Youinou, P., Hay, F.C.: The relationship between exposed galactose and N-acetylglucosamine residues on IgG in rheumatoid arthritis (RA), juvenile chronic arthritis (JCA) and Sjogren’s syndrome (SS). Clin. Exp. Immunol. 105, 99–103 (1996)CrossRefPubMedGoogle Scholar
  6. 6.
    Carson, D.A., Chen, P.P., Fox, R.I., Kipps, T.J., Jirik, F., Goldfien, R.D., Silverman, G., Radoux, V., Fong, S.: Rheumatoid Factor and Immune Networks. Ann. Rev. Immunol. 5, 109–126 (1987)CrossRefGoogle Scholar
  7. 7.
    Smith, K.D., Pollacchi, A., Field, M., Watson, J.: The heterogeneity of the glycosylation of alpha-1-acid glycoprotein between the sera and synovial fluid in rheumatoid arthritis. Biomed. Chromatogr. 16, 261–266 (2002)CrossRefPubMedGoogle Scholar
  8. 8.
    Moshage, H.: Cytokines and the hepatic acute phase response. J. Pathol. 181, 257–266 (1997)CrossRefPubMedGoogle Scholar
  9. 9.
    Gabay, C., Kushner, I.: Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 340, 448–454 (1999)CrossRefPubMedGoogle Scholar
  10. 10.
    Hak, A.E., Stehouwer, C.D., Bots, M.L., Polderman, K.H., Schalkwijk, C.G., Westendorp, I.C., Hofman, A., Witteman, J.C.: Associations of C-reactive protein with measures of obesity, insulin resistance, and subclinical atherosclerosis in healthy, middle-aged women. Arterioscler. Thromb. Vasc. Biol. 19, 1986–1991 (1999)PubMedGoogle Scholar
  11. 11.
    Malhotra, R., Wormald, M.R., Rudd, P.M., Fischer, P.B., Dwek, R.A., Sim, R.B.: Glycosylation changes of Ig associated with rheumatoid arthritis can activate complement via the mannose binding protein. Nat. Med. 1, 237–243 (1995)CrossRefPubMedGoogle Scholar
  12. 12.
    Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)PubMedGoogle Scholar
  13. 13.
    Weatherman, R.V., Mortell, K.H., Chervenak, M., Kiessling, L.L., Toone, E.J.: Specificity of C-glycoside complexation by mannose/glucose specific lectins. Biochemistry 35, 3619–3624 (1996)CrossRefPubMedGoogle Scholar
  14. 14.
    Smith, M.A., Bains, S.K., Betts, J.C., Choy, E.H., Zanders, E.D.: Use of two-dimensional gel electrophoresis to measure changes in synovial fluid proteins from patients with rheumatoid arthritis treated with antibody to CD4. Clin. Diagn. Lab. Immunol. 1, 105–111 (2001)CrossRefGoogle Scholar
  15. 15.
    Kuster, B., Wheeler, S.F., Hunter, A.P., Dwek, R.A., Harvey, D.J.: Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography. Anal. Biochem. 250, 82–101 (1997)CrossRefPubMedGoogle Scholar
  16. 16.
    Mitra, S., Das, H.R.: A novel mannose binding lectin from plasma of Labeo. rohita. Fish. physiol. biochem. 25, 125–129 (2002)Google Scholar
  17. 17.
    Das, H.R., Jayaraman, V., Bhattacharya, I.: Carbohydrate analysis of bradyrhizobial (NC92) lipopolysaccharides by high performance anion exchange chromatography with pulsed amperometric detection. Biosci. Rep. 19, 219–225 (1999)CrossRefPubMedGoogle Scholar
  18. 18.
    Sanchez, J.C., Appel, R.D., Golaz, O.G., Pasquali, C., Ravier, F., Bairoch, A., Hochstrasse, D.F.: Inside SWISS-2DPAGE database. Electrophoresis 16, 1131–1151 (1995)CrossRefPubMedGoogle Scholar
  19. 19.
    Naitoh, A., Aoyagi, Y., Asakura, H.: Highly enhanced fucosylation in patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 14, 436–445 (1999)CrossRefPubMedGoogle Scholar
  20. 20.
    Gravel, P., Walzer, C., Aubry, C., Balant, L.P., Yersin, B., Hochstrasse, D.F., Guimon, J.: New alterations of serum glycoproteins in alcoholic and cirrhotic patients revealed by high-resolution two-dimensional gel electrophoresis. Biochem. Biophys. Res. Commun. 220, 78–85 (1996)CrossRefPubMedGoogle Scholar
  21. 21.
    Butler, M., Quelhas, D., Critchley, A.J., Carchon, H., Hebestreit, H.F., Hibbert, R.G., Vilarinho, L., Teles, E., Matthijs, G., Schollen, E., Argibay, P., Harvey, D.J., Dwek, R.A., Jaeken, J., Rudd, P.M.: Detailed glycan analysis of serum glycoproteins of patients with congenital disorders of glycosylation indicates the specific defective glycan processing step and provides an insight into pathogenesis. Glycobiology 13, 601–622 (2003)CrossRefPubMedGoogle Scholar
  22. 22.
    Wang, J.Y., Roehrl, M.H.: Glycosaminoglycans are a potential cause of rheumatoid arthritis. Proc. Natl. Acad. Sci. USA. 99, 14362–14367 (2002)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Sunil K. Raghav
    • 1
  • Bhawna Gupta
    • 1
  • Charu Agrawal
    • 1
  • Ashish Saroha
    • 1
  • Rakha H. Das
    • 1
  • Ved P. Chaturvedi
    • 2
  • Hasi R. Das
    • 1
  1. 1.Institute of Genomics & Integrative BiologyDelhiIndia
  2. 2.Department of Rheumatology, R&RArmy HospitalN. DelhiIndia

Personalised recommendations