Glycoconjugate Journal

, Volume 23, Issue 5–6, pp 443–452 | Cite as

Preferential reduction of the α-2-6-sialylation from cell surface N-glycans of human diploid fibroblastic cells by in vitro aging

  • Tomomi Tadokoro
  • Kiyotaka Yamamoto
  • Iku Kuwahara
  • Hirosuke Fujisawa
  • Masahiko Ikekita
  • Akiyoshi Taniguchi
  • Takeshi Sato
  • Kiyoshi Furukawa
Original Papers

Abstract

Human diploid fibroblastic cell line, TIG-3, has a finite life span of about 80 population doubling levels (PDL), and is used for in vitro aging studies. Young cells (PDL 23) grew to higher cell densities at a higher growth rate than aged cells (PDL 77). When the electrophoretic mobility of cells was determined, the negative surface charge of the aged cells decreased significantly when compared to that of young cells. Lectin blot analysis of membrane glycoproteins showed that the α-2-6-sialylation but not the α-2-3-sialylation of N-glycans decreases markedly in the aged cells when compared to the young cells. In support of this observation, the cDNA microarray assay and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the gene expression of the α-2,6-sialyltransferase I (ST6Gal I), which transfers sialic acid to galactose residues of N-glycans, decreases in the aged cells. These results indicate that the concordant decrease of the α-2,6-sialylation of N-glycans with the ST6Gal I gene expression is induced in TIG-3 cells by in vitro aging.

Keywords

N-glycans Sialylation ST6Gal I TIG-3 cells In vitroaging 

Abbreviations

CBB

Coomassie Brilliant Blue

Con A

concanavalin A

DT

doubling time

EtBr

ethidium bromide

β-1,4-GalT

β-1,4-galactosyltransferase

GlcNAcT II

UDP-GlcNAc

Manα

1,6-Man β-1,2-N-acetyl-glucosaminyltransferase

G3PDH

glyceraldehyde 3-phosphate dehydrogenase

FCS

fetal calf serum

LCA

Lens culinaris agglutinin

L-PHA

leuko-agglutinating phytohemagglutinin

MAA

Maackia amurensis agglutinin

MES

2-(N-morpholino)ethansulfonic acid

PBS

phosphate-buffered saline

PDL

population doubling levels

PVL

Psathyrella velutina lectin

RCA-I

Ricinus communis agglutinin-I

RT-PCR

reverse transcription polymerase chain reaction

SNA

Sambucus nigra agglutinin

ST3Gal III

β-galactoside α-2,3-sialyltransferase III

ST3Gal IV

β-galactoside α-2,3-sialytransferase IV

ST6Gal I

β-galactoside α-2,6-sialyltransferase I

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hayflick, L., Moorhead, P.S.: The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961)CrossRefGoogle Scholar
  2. 2.
    Hayflick, L.: The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–36 (1965)PubMedCrossRefGoogle Scholar
  3. 3.
    Stanulis-Praeger, B.M.: Cellular senescence revisited: a review. Mech. Ageing Dev. 38, 1–48 (1987)PubMedCrossRefGoogle Scholar
  4. 4.
    Blackburn, E.H.: Structure and function of telomeres. Nature 350, 569–73 (1991)PubMedCrossRefGoogle Scholar
  5. 5.
    Greider, C.W.: Telomerase length regulation, Annu. Rev. Biochem. 65, 337–65 (1996)PubMedCrossRefGoogle Scholar
  6. 6.
    Kawado, T., Hayashi, O., Sato, T., Ito, H., Hayakawa, S., Takayama, E., Furukawa, K.: Rapid cell senescence-associated changes in galactosylation of N-linked oligosaccharides in human lung adenocarcinoma A549 cells. Arch. Biochem. Biophys. 426, 306–13 (2004)PubMedCrossRefGoogle Scholar
  7. 7.
    Katakura, Y., Nakata, E., Miura, T., Shirahata, S.: Transforming growth factor β triggers two independent-senescence programs in cancer cells. Biochem. Biophys. Res. Commun. 255, 110–15 (1999)PubMedCrossRefGoogle Scholar
  8. 8.
    Kuwahara, I., Ikebuchi, K., Hamada, H., Niitsu, Y., Miyazawa, K., Ohyashiki, K., Fujisawa, H., Furukawa, K.: Changes in N-glycosylation of human stromal cells by telomerase expression. Biochem. Biophys. Res. Commun. 301, 293–97 (2003)PubMedCrossRefGoogle Scholar
  9. 9.
    Ioffe, E., Stanley, P.: Mice lacking N-acetylglucosaminyltransferase I activity die at mid-gestation, revealing an essential role for complex or hybrid N-linked carbohydrates. Proc. Natl. Acad. Sci. USA. 91, 728–32 (1994)PubMedCrossRefGoogle Scholar
  10. 10.
    Metzler, M., Gertz, A., Sarkar, M., Schachter, H., Schrader, J.W., Marth, J.D.: Complex asparagine-linked oligosaccharides are required for morphogenic events during post-implantation development. EMBO J. 13, 2056–65 (1994)PubMedGoogle Scholar
  11. 11.
    Asano, M., Furukawa, K., Kiso, M., Matsumoto, S., Umesaki, Y., Kochibe, N., Iwakura, Y.: Growth retardation and early death of β-1,4-galactosyltransferase-knockout mice with augmented proliferation and abnormal differentiation of epithelial cells. EMBO J. 16, 1850–57 (1997)PubMedCrossRefGoogle Scholar
  12. 12.
    Lu, Q., Hasty, P., Shur, B.D.: Targeted mutation in β1,4-galactosyltransferase leads to pituitary insufficiency and neonatal lethality. Dev. Biol. 181, 257–67 (1997)PubMedCrossRefGoogle Scholar
  13. 13.
    Furukawa, K., Takamiya, K., Okada, M., Inoue, M., Fukumoto, S., Furukawa, K.: Novel functions of complex carbohydrates elucidated by the mutant mice of glycosyltransferase genes. Biochim. Biophy. Acta. 1525, 1–12 (2001)Google Scholar
  14. 14.
    Sato, T., Furukawa, K., Greenwalt, D.E., Kobata, A.: Most bovine milk fat globule membrane glycoproteins contain asparagine-linked sugar chains with GalNAcβ1→4GlcNAc groups. J. Biochem. (Tokyo) 117, 890–900 (1993)Google Scholar
  15. 15.
    Yamamoto, K., Yamamoto, M., Ooka, H.: Changes in negative surface charge of human diploid fibroblasts, TIG-1, during in vitro aging. Mech. Ageing Dev. 42, 183–95 (1988)PubMedCrossRefGoogle Scholar
  16. 16.
    Sato, T., Shirane, K., Kido, M., Furukawa, K.: Correlated gene expression between β-1,4-galactosyltransferase V and N-acetylglucosaminyltransferase V in human cancer cell lines. Biochem. Biophys. Res. Commun. 276, 1019–23 (2000)PubMedCrossRefGoogle Scholar
  17. 17.
    Ishibashi, Y., Kobayashi, F., Idesawa, A., Taniguchi, A., Matsuzawa, S.: Effects of carbocisteine on altered activities of glycosidases and glycosyltransferases and expression of Muc5ac in SO2-exposed rats. Eur. J. Pharmacol. 487, 7–15 (2004)PubMedCrossRefGoogle Scholar
  18. 18.
    Epstein, C.J., Martin, G.M., Schultz, A.L., Motulsky, A.G.: Werner’s syndrome: A review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45, 177–221 (1966)PubMedGoogle Scholar
  19. 19.
    Ogata, S., Muramatsu, T., Kobata, A.: Fractionation of glycopeptides by affinity column chromatography on concanavalin A-Sepharose. J. Biochem. (Tokyo) 78, 687–96 (1975)Google Scholar
  20. 20.
    Baenziger, J.U., Fiete, D.: Structural determinants of Ricinus communis agglutinin and toxin specificity for oligosaccharides. J. Biol. Chem. 254, 9795–99 (1979)PubMedGoogle Scholar
  21. 21.
    Merkle, R.K., Cummings, R.D.: Lectin affinity chromatography of glycoproteins. Methods Enzymol. 138, 232–59 (1987)PubMedCrossRefGoogle Scholar
  22. 22.
    Kornfeld, S., Reitman, M.L., Kornfeld, R.: The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J. Biol. Chem. 256, 6633–40 (1981)PubMedGoogle Scholar
  23. 23.
    Endo, T., Ohbayashi, H., Kanazawa, K., Kochibe, N., Kobata, A.: Carbohydrate binding specificity of immobilized Psathyrella velutina lectin. J. Biol. Chem. 267, 707–13 (1992)PubMedGoogle Scholar
  24. 24.
    Ueda, H., Matsumoto, H., Takahashi, N., Ogawa, H.: Psathyrella velutina mushroom lectin exhibits high affinity toward sialoglycoproteins possessing terminal N-acetylneuraminic acid Α2,3-linked to penultimate galactose residues of trisialyl N-glycans. Comparison with other sialic acid-specific lectins. J. Biol. Chem. 277, 24916–25 (2002)PubMedCrossRefGoogle Scholar
  25. 25.
    Wang, W.C., Cummings, R.D.: The immobilized leukoagglutinin from the seeds of Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked Α-2,3 to penultimate galactose residues. J. Biol. Chem. 263, 4576–85 (1988)PubMedGoogle Scholar
  26. 26.
    Shibuya, N., Goldstein, I.J., Broekaert, W.F., Nsimba-Lubaki, M., Peeters, B., Peumans, W.J.: The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(Α2–6)Gal/GalNAc sequence. J. Biol. Chem. 262, 1596–601 (1987)PubMedGoogle Scholar
  27. 27.
    Kelleher, D.J., Kreibich, G., Gilmore, R.: Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell 69, 55–65 (1992)PubMedCrossRefGoogle Scholar
  28. 28.
    Aasheim, H.C., Aas-Eng, D.A., Deggerdal, A., Blomhoff, H.K., Funderud, S., Smeland, E.B.: Cell-specific expression of human β-galactoside Α-2,6-sialyltransferase transcripts differing in the 5′-untranslated region. Eur. J. Biochem. 213, 467–75 (1993)PubMedCrossRefGoogle Scholar
  29. 29.
    Svensson, E.C., Conley, P.B., Paulson, J.C.: Regulated expression of Α-2,6-sialyltransferase by the liver-enriched transcription factors HNF-1, DBP, and LAP. J. Biol. Chem. 267, 3466–72 (1992)PubMedGoogle Scholar
  30. 30.
    Aas-Eng, D.A., Asheim, H.C., Deggerdal, A., Smeland, E., Funderud, S.: Characterization of a promoter region supporting transcription of a novel human β-galactoside Α-2,6-sialyltransferase transcript in HepG2 cells. Biochim. Biophys. Acta. 1261, 166–69 (1995)PubMedGoogle Scholar
  31. 31.
    Lo, N.W., Lau, J.T.: Transcription of the β-galactoside Α-2,6-sialyltransferase gene in B lymphocytes is directed by a separate and distinct promoter. Glycobiology 6, 271–79 (1996)PubMedGoogle Scholar
  32. 32.
    Wang, X., Vertino, A., Eddy, R.L., Byers, M.G., Jani-Sait, S.N., Shows, T.B., Lau, J.T.: Chromosome mapping and organization of the human β-galactoside Α-2,6-sialyltransferase gene. Differential and cell-type specific usage of upstream exon sequences in B-lymphoblastoid cells. J. Biol. Chem. 268, 4355–61 (1993)PubMedGoogle Scholar
  33. 33.
    Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O.: A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA. 92, 9363–67 (1995)PubMedCrossRefGoogle Scholar
  34. 34.
    Parekh, R., Roitt, I., Isenberg, D., Dwek, R., Rademacher, T.: Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J. Exp. Med. 167, 1731–6 (1988)PubMedCrossRefGoogle Scholar
  35. 35.
    Blondal, J.A., Dick, J.E., Wright, J.A.: Membrane glycoprotein changes during the senescence of normal human diploid fibroblasts in culture. Mech. Ageing Dev. 30, 273–83 (1985)PubMedCrossRefGoogle Scholar
  36. 36.
    Yamada, E., Tsukamoto, Y., Sasaki, R., Yagyu, K., Takahashi, N.: Structural changes of immunoglobulin G oligosaccharides with age in healthy human serum. Glycoconj. J. 14, 401–5 (1997)PubMedCrossRefGoogle Scholar
  37. 37.
    Hegner, D., Platt, D., Heckers, H., Schloeder, U., Breuninger, V.: Age-dependent physiochemical and biochemical studies of human red cell membranes. Mech. Ageing Dev. 10, 117–30 (1979)PubMedCrossRefGoogle Scholar
  38. 38.
    Ohsawa, T., Nagai, Y.: Ganglioside changes during cell aging in human diploid fibroblast TIG-1. Exp. Gerontol. 17, 287–93 (1982)PubMedCrossRefGoogle Scholar
  39. 39.
    Schachtschabel, D.O., Wever, J.: Age-related decline in the synthesis of glycosaminoglycans by cultured human fibroblasts (WI-38). Mech. Ageing Dev. 8, 257–64 (1978)PubMedCrossRefGoogle Scholar
  40. 40.
    Matuoka, K., Mitsui, Y.: Changes in cell-surface glycosaminoglycans in human diploid fibroblasts during in vitro aging. Mech. Ageing Dev. 15, 153–63 (1981)PubMedCrossRefGoogle Scholar
  41. 41.
    Aminoff, D., Bruegge, W.F., Bell, W.C., Sarpolis, K., Williams, R.: Role of sialic acid in survival of erythrocytes in the circulation: interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level, Proc. Natl. Acad. Sci. USA. 74, 1521–24 (1977)PubMedCrossRefGoogle Scholar
  42. 42.
    Brunngraber, E.G., Webster, J.C.: Changes in glycoprotein carbohydrate content in the aging human brain. Neurochem. Res. 11, 579–588 (1986)PubMedCrossRefGoogle Scholar
  43. 43.
    Aminoff, D., Bell, W.C., VorderBruegge, W.G.: Cell surface carbohydrate recognition and the viability of erythrocytes in circulation. Prog. Clin. Biol. Res. 23, 569–81 (1978)PubMedGoogle Scholar
  44. 44.
    Lutz, H.U., Fehr, J.: Total sialic acid content of glycophorins during senescence of human red blood cells. J. Biol. Chem. 254, 11177–80 (1979)PubMedGoogle Scholar
  45. 45.
    Rutishauser, U., Watanabe, M., Silver, J., Troy, F.A., Vimr, E.R.: Specific alteration of NCAM-mediated cell adhesion by an endoneuraminidase. J. Cell Biol. 101, 1842–49 (1985)PubMedCrossRefGoogle Scholar
  46. 46.
    Weisgerber, C., Husmann, M., Frosch, M., Rheinheimer, C., Peuckert, W., Gorgen, I., Bitter-Suermann, D.: Embryonic neural cell adhesion molecule in cerebrospinal fluid of younger children: age-dependent decrease during the first year. J. Neurochem. 55, 2063–71 (1990)PubMedGoogle Scholar
  47. 47.
    Kudo, M., Kitajima, K., Inoue, S., Shiokawa, K., Morris, H.R., Dell, A., Inoue, Y.: Characterization of the major core structures of the Α2→8-linked polysialic acid-containing glycan chains present in neural cell adhesion molecule in embryonic chick brains. J. Biol. Chem. 271, 32667–77 (1996)PubMedCrossRefGoogle Scholar
  48. 48.
    Takashima, S., Tsuji, S., Tsujimoto, M.: Characterization of the second type of human β-galactoside Α-2,6-sialyltransferase (ST6Gal II), which sialylates Galβ1,4GlcNAc structures on oligosaccharides preferentially. Genomic analysis of human sialyltransferase genes. J. Biol. Chem. 277, 45719–28 (2002)PubMedCrossRefGoogle Scholar
  49. 49.
    Itzhaki, O., Skutelsky, E., Kaptzan, T., Sinai, J., Michowitz, M., Huszar, M., Leibovici, J.: Ageing-apoptosis relation in murine spleen. Mech. Ageing Dev. 124, 999–1012 (2003)PubMedCrossRefGoogle Scholar
  50. 50.
    Higashi, N., Fujioka, K., Denda-Nagai, K., Hashimoto, S., Nagai, S., Sato, T., Fujita, Y., Morikawa, A., Tsuiji, M., Miyata-Takeuchi, M., Sano, Y., Suzuki, N., Yamamoto, K., Matsushima, K., Irimura, T.: The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte-derived immature dendritic cells. J. Biol. Chem. 277, 20686–93 (2002)PubMedCrossRefGoogle Scholar
  51. 51.
    Ezekowitz, R.A., Sastry, K., Bailly, P., Warner, A.: Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J. Exp. Med. 172, 1785–94 (1990)PubMedCrossRefGoogle Scholar
  52. 52.
    Kelm, S., Schauer, R., Manuguerra, J.C., Gross, H.J., Crocker, P.R.: Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconj. J. 11, 576–85 (1994)PubMedCrossRefGoogle Scholar
  53. 53.
    Seales, E.C., Jurado, G.A., Singhal, A., Bellis, S.L.: Ras oncogene directs expression of a differentially sialylated, functionally altered β1 integrin. Oncogene 22, 7137–45 (2003)PubMedCrossRefGoogle Scholar
  54. 54.
    Abe, Y., Smith, C.W., Katkin, J.P., Thurmon, L.M., Xu, X., Mendoza, L.H., Ballantyne, C.M.: Endothelial Α2,6-linked sialic acid inhibits VCAM-1-dependent adhesion under flow conditions. J. Immunol. 163, 2867–76 (1999)PubMedGoogle Scholar
  55. 55.
    Dalziel, M., Dall’Olio, F., Mungul, A., Piller, V., Piller, F.: Ras oncogene induces β-galactoside Α2,6-sialyltransferase (ST6Gal I) via a RalGEF-mediated signal to its housekeeping promoter. Eur. J. Biochem. 271, 3623–34 (2004)PubMedCrossRefGoogle Scholar
  56. 56.
    Quentin, E., Gladen, A., Roden, L., Kresse, H.: A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc. Natl. Acad. Sci. USA. 87, 1342–46 (1990)PubMedCrossRefGoogle Scholar
  57. 57.
    Okajima, T., Fukumoto, S., Furukawa, K., Urano, T.: Molecular basis for the progeroid variant of Ehlers-Danlos syndrome. Identification and characterization of two mutations in galactosyltransferase I gene. J. Biol. Chem. 274, 28841–44 (1999)PubMedCrossRefGoogle Scholar
  58. 58.
    Almeida, R., Levery, S.B., Mandel, U., Kresse, H., Schwientek, T., Bennett, E.P., Clausen, H.: Cloning and expression of a proteoglycan UDP-galactose:β-xylose β1,4-galactosyltransferase I. A seventh member of the human β1,4-galactosyltransferase gene family. J. Biol. Chem. 274, 26165–71 (1999)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Tomomi Tadokoro
    • 1
    • 2
  • Kiyotaka Yamamoto
    • 1
  • Iku Kuwahara
    • 1
    • 3
  • Hirosuke Fujisawa
    • 3
  • Masahiko Ikekita
    • 2
  • Akiyoshi Taniguchi
    • 4
  • Takeshi Sato
    • 1
    • 5
  • Kiyoshi Furukawa
    • 1
    • 5
  1. 1.Department of Biosignal ResearchTokyo Metropolitan Institute of GerontologyTokyoJapan
  2. 2.Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNodaJapan
  3. 3.Faculty of Education, Institute of Natural SciencesSaitama UniversitySaitamaJapan
  4. 4.Biomaterials Center, National Institute For Materials ScienceTsukubaJapan
  5. 5.Laboratory of GlycobiologyNagaoka University of TechnologyNagaokaJapan

Personalised recommendations