Glycoconjugate Journal

, Volume 23, Issue 1–2, pp 115–125 | Cite as

Search for additional influenza virus to cell interactions

  • E. M. Rapoport
  • L. V. Mochalova
  • H.-J. Gabius
  • J. Romanova
  • N. V. Bovin
Article

Abstract

Sialyl oligosaccharides have long been considered to be the sole receptors for influenza virus. However, according to [1] some viruses are able to grow in sialic-free MDCK cells. Here we attempted to reveal a possible second, non-sialic receptor, hypothesizing the involvement of additional carbohydrate lectin recognition in influenza virus reception process, first of all in situations when a lectin of the host cell could recognize the viral carbohydrate ligand. We tested the presence of galactose- and sialic acid-binding lectins, as well as mannoside- and sulfo-N-acetyllactosamine-recognizing properties of MDCK and Vero cells using polyacrylamide neoglycoconjugates and antibodies. MDCK cells bind galactoside probes stronger than Vero cells, whereas Vero cells bind preferentially sialoside, mannoside and various sulfo-oligosaccharide probes. The probing of viruses with the neoglycoconjugates revealed specific 6′-HSO 3 LacNAc (but not other sulfated oligosaccharides) binding property of A and B human strains. Affinity of 6′-HSO 3 LacNAc probe was comparable with affinity of 6′-SiaLac probe but the binding was not inhibited by the sialooligosaccharide.

Keywords

Galectins Glycoconjugates Influenza virus Hemagglutinin Siglecs 

Abbreviations

BHK

baby hamster kidney cells

biot

biotin residue

BSA

bovine serum albumin

FBS

fetal bovine serum

FITC

fluorescein isothiocyanate

fluo

fluorescein residue

HA

hemagglutinin

MBP

mannose-binding protein

MDBK

Madin-Darby bovine kidney cells

MDCK

Madin-Darby canine kidney cells

NA

neuraminidase

OS

oligosaccharide

PAA

polyacrylamide

PBS

phosphate buffered saline

PBA

PBS containing 0.2% BSA

RBS

receptor binding site

SP

surfactant protein

Sug

mono- or oligosaccharide residue

3′SL

3′-sialyllactose

LacNAc

N-acetyllactosamine

6′SLN

6′-sialyl-N-acetyllactosamine

3′SLN

3′-sialyl-N-acetyllactosamine

Neu5Ac

α-N-acetylneuraminic acid

asialoGM1

Galβ1-3GalNAcβ1-3Galβ1-4Glc

Fs

GalNAcα1-3GalNAcβ

Man 3

Manα1-6(Manα1-3)Man

A tri

GalNAcα1-3(Fucα1-2)Gal

A tetra

GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAc

B tri

Galα1-3(Fucα1-2)Gal

SiaLe x

Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAc

7-OS

(GlcNAcβ1-2Manα1-) 2-3,6-Manβ1-4GlcNAcβ1-4GlcNAc

11-OS

(Neu5Acα2-6Galβ1-4GlcNAcβ1- 2Manα1-)2-3, 6-Manβ1-4GlcNAcβ1- 4GlcNAc

Tββ

Galβ1-3GalNAcβ

TF

Galβ1-3GalNAcα

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stray, S.J., Cummings, R.D., Air G.M.: Influenza virus infection of desialylated cells. Glycobiology 10, 649–58 (2000)CrossRefPubMedGoogle Scholar
  2. 2.
    Paulson, J.C.: Interaction of animal viruses with cell surface receptors. In: M. Conn (Ed.) The Receptors, vol. 2, Academic Press, Orlando, 1985, pp. 131–219Google Scholar
  3. 3.
    Wiley, D.C., Skehel, J.J.: The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem 56, 365–94 (1987)CrossRefPubMedGoogle Scholar
  4. 4.
    Herrler, G., Hausmann, J., Klenk, H.D.: Sialic acid as receptor determinant of ortho- and paramyxoviruses. In: A. Rosenberg (Ed.) Biology of the Sialic Acids, Plenum, New York, 1995, pp. 315–36Google Scholar
  5. 5.
    Suzuki, Y.: Gangliosides as influenza virus receptors. Variation of influenza viruses and their recognition of the receptor sialo-sugar chains. Progr Lipid Res 33, 429–57 (1994)Google Scholar
  6. 6.
    Gambaryan, A.S., Tuzikov, A.B. Piskarev, V.E., Yamnikova, S.S., L'vov, D.K., Robertson, J.C., Bovin, N.V., Matrosovich, M.N.: Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A, and influenza B viruses share a common high binding affinity for 6′-sialyl(N-acetyllactosamine). Virology 233, 224–234 (1997)PubMedGoogle Scholar
  7. 7.
    Rogers, G.N., D'Souza, B.L.: Receptor-binding properties of human and animal H1 influenza virus isolates. Virology 173, 317–22 (1989)CrossRefPubMedGoogle Scholar
  8. 8.
    Gambaryan, A.S., Robertson, J.S., Matrosovich, M.N.: Effects of eggs-adaptation on the receptor-binding properties of human influenza A and B viruses. Virology 258, 232–9 (1999)CrossRefPubMedGoogle Scholar
  9. 9.
    Barton, E.S., Connolly, J.L., Forrest, J.C., Chappell, J.D., Dermody, T.S.: Utilization of sialic acid as a coreceptor enhances reovirus attachment by multi-step adhesion strengthening. J. Biol. Chem. 276, 2200–11 (2001)CrossRefPubMedGoogle Scholar
  10. 10.
    Forrest, J.C., Dermody, T.S.: Reovirus receptors and pathogenesis. J. Virol. 77, 9109–115 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    de Lima, M.C., Ramalho-Santos, J., Flasher, D., Slepushkin, V.A., Nir, S., Duzgunes, N.: Target cell membrane sialic acid modulates both binding and fusion activity of influenza virus. Biochim. Biophys. Acta. 1236, 323–30 (1995)PubMedGoogle Scholar
  12. 12.
    Chu, V.C., Whittaker, G.R., Influenza virus entry and infection require host cell N-linked glycoprotein. Proc. Natl. Acad. Sci. USA 101, 18153–8 (2004)PubMedGoogle Scholar
  13. 13.
    Suzuki, T., Sometani, A., Horiike, G., Mizutani, Y., Masuda, H., Yamada, M., Tahara, H., Xu, G., Myamoto, D., Oku, N., Okada, S., Kiso, M., Hasegawa, A., Ito, T., Kawaoka, Y., Suzuki, Y.: Sulphatide binds to human and animal influenza viruses and inhibits the viral infection. Biochem. J. 318, 389–93 (1996)PubMedGoogle Scholar
  14. 14.
    Niimura, Y., Ishizuka, I.: Adaptive changes in sulfoglycolipids of kidney cell lines by culture in anisosmotic media. Biochim. Biophys. Acta. 1052, 248–54 (1990)PubMedGoogle Scholar
  15. 15.
    Gambaryan, A.S., Tuzikov, A.B., Pazynina, G.V., Webster, R.G., Matrosovich, M.N., Bovi, V.: H5N1 chicken influenza viruses display a high binding affinity for the Neu5Acα2-3Galβ1-4(6-HSO3)GlcNAc receptor. Virology 326, 310–16 (2004)CrossRefPubMedGoogle Scholar
  16. 16.
    Martin, J., Wharton, S.A., Lin, Y.P., Takemoto, D.K., Skehel, J.J., Wiley, D.C., Steinhauer, D.A.: Studies of the binding properties of influenza virus hemagglutinin receptor-site mutants. Virology 241, 101–11 (1998)PubMedGoogle Scholar
  17. 17.
    Hughes, M.T., McGregor, M., Suzuki, T., Suzuki, Y., Kawaoka, Y.: Adaptation of influenza A viruses to cells expressing low levels of sialic acid leads to loss of neuraminidase activity. J. Virol. 75, 3766–70 (2001)PubMedGoogle Scholar
  18. 18.
    Kistner, O., Barrett, P.N., Mundt, W., Reiter, M.: Schober-Bendixen S, Dorner F, Development of a mammalian cell (Vero) derived candidate influenza virus vaccine. Vaccine 16, 960–8 (1998)CrossRefPubMedGoogle Scholar
  19. 19.
    Halperin, S.A., Smith, B., Mabrouk, T., Germain, M., Trepanier, P., Hassell, T., Treanor, J., Gauthier, R., Mills, E.L.: Safety and immunogenicity of a trivalent, inactivated, mammalian cell culture-derived influenza vaccine in healthy adults, seniors, and children. Vaccine 20, 1240–7 (2002)CrossRefPubMedGoogle Scholar
  20. 20.
    Govorkova, E.A., Murti, G., Meignier, B., de Taisne, C., Webster, R.G.: African green monkey kidney (Vero) cells provide an alternative host cell system for influenza A and B viruses. J. Virol. 70, 5519–24 (1996)PubMedGoogle Scholar
  21. 21.
    Tuzikov, A.B., Gambaryan, A.S., Juneja, L.R., Bovin, N.V.: Conversion of complex oligosaccharides into polymeric conjugates and their anti-influenza virus inhibitory potency. J. Carbohydr. Chem. 19, 1191–1200 (2000)Google Scholar
  22. 22.
    Kopitz, J., von Reitzenstein, C., Burchert, M., Cantz, M., Gabius, H-J: Galectin-1 is a major receptor for ganglioside GM1, a product of the growth-controlling activity of a cell surface ganglioside sialidase, on human neuroblastoma cell in culture. J. Biol. Chem. 273, 11205–11 (1998)CrossRefPubMedGoogle Scholar
  23. 23.
    Romanova, J., Katinger, D., Ferko, B., Voglauer, R., Mochalova, L., Bovin, N., Lim, W., Katinger, H., Egorov, A.: Distinct host range of influenza H3N2 virus isolates in Vero and MDCK cells is determined by cell specific glycosylation pattern. Virology 307, 90–7 (2003)CrossRefPubMedGoogle Scholar
  24. 24.
    Mochalova, L., Gambaryan, A., Romanova, J., Tuzikov, A., Chinarev, A., Katinger, D., Katinger, H., Egorov, A., Bovin, N.: Receptor-binding properties of modern human influenza viruses primary isolated in Vero and MDCK cells and chicken embryonated eggs. Virology 313, 473–80 (2003)CrossRefPubMedGoogle Scholar
  25. 25.
    Kistner, O., Barrett, P.N., Mundt, W., Reiter, M., Schober-Bendixen, S., Eder, G., Dorner, F.: Development of a Vero cell-derived influenza whole virus vaccine. Dev. Biol. Stand. 98, 101–10 (1999)PubMedGoogle Scholar
  26. 26.
    Kayser, K., Bovin, N.V., Zemlyanukhina, T.V., Donaldo-Jacinto, S., Koopmann, J., Gabius, H-J.: Cell type-dependent alterations of binding of synthetic blood antigen-related oligosaccharides in lung cancer. Glycoconj. J. 11, 339–44 (1994)CrossRefPubMedGoogle Scholar
  27. 27.
    Anders, E.M., Hartley, C.A., Jackson, D.C.: Bovine and mouse serum beta inhibitors of influenza A viruses are mannose-binding lectins. Proc. Natl. Acad. Sci. USA 87, 4485–9 (1990)PubMedGoogle Scholar
  28. 28.
    Hartshorn, K.L., Crouch, E.C., White, M.R., Eggeleton, P., Tauber, A.I., Chang, D., Sastry, K.: Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses. J. Clin. Invest. 94, 311–19 (1994)PubMedGoogle Scholar
  29. 29.
    Anders, E.M., Hartley, C.A., Reading, P.C., Ezekowitz, RAB: Complement-dependent neutralization of influenza virus by a serum mannose-binding lectin. J. Gen. Virol. 74, 615–22 (1994)Google Scholar
  30. 30.
    Benne, C.A., Kraaijeveld, C.A., van Strijp, JAG, Brouwer, E., Harmsen, M., Verhoef, J., van Golde, LMG: van Iwaarden JF, Interaction of surfactant protein A with influenza A viruses: binding and neutralization. J. Infect. Dis. 171, 335–41 (1995)PubMedGoogle Scholar
  31. 31.
    Kaverin, N.V., Gambaryan, A.S., Bovin, N.V., Rudneva, I.A., Shilov, A.A., Khodova, O.M., Varich, N.L., Makarova, B.V., Kropotkina, E.A.: Postreassortment changes in influenza virus hemagglutinin restoring HA-NA functional match. Virology 244, 315–21 (1998)CrossRefPubMedGoogle Scholar
  32. 32.
    Kaverin, N.V., Matrosovich, M.N., Gambaryan, A.S., Rudneva, I.A., Shilov, A.A., Varich, N.L., Makarova, N.V., Kropotkina, E.A., Sinitsin, B.V.: Intergenic HA-NA interactions in influenza A virus: postreassortment substitutions of charged amino acid in the hemagglutinin of different subtype. Virus Res. 66, 123–9 (2000)CrossRefPubMedGoogle Scholar
  33. 33.
    Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A., Klenk, H.D.: Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 78, 12665–7 (2004)CrossRefPubMedGoogle Scholar
  34. 34.
    Mandelboim, O., Lieberman, N., Lev, M., Paul, L., Arnon, T.I., Bushkin, Y., Davis, D.M., Strominger, J.L., Yewdell, J.W., Porgador, A.: Recognition of haemagglutinins on virus-infected cells by NKp46 activates lysis by human NK cells. Nature 409, 1055–60 (2001)CrossRefPubMedGoogle Scholar
  35. 35.
    Arnon, T.I., Achdout, H., Lieberman, N., Gazit, R., Gonen-Gross, T., Katz, G., Bar-Ilan, A., Bloushtain, N., Lev, M., Joseph, A., Kedar, E., Porgador, A., Mandelboim, O.: The mechanisms controlling the recognition of tumor- and virus-infected cells by NKp46. Blood 103, 664–72 (2004)CrossRefPubMedGoogle Scholar
  36. 36.
    Montgomery, R.I., Warner, M.S., Lum, B.J., Spear, P.G.: Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87, 427–36 (1996)CrossRefPubMedGoogle Scholar
  37. 37.
    Margolis, L.: HIV: from molecular recognition to tissue pathogenesis. FEBS. Lett. 433, 5–8 (1998)CrossRefPubMedGoogle Scholar
  38. 38.
    Roberts, P.C., Compans, R.W.: Host cell dependence of viral morphology. Proc Natl Acad Sci USA 95, 5746–51 (1998)CrossRefPubMedGoogle Scholar
  39. 39.
    Gambaryan, A.S., Marinina, V.P., Tuzikov, A.B., Bovin, N.V., Rudneva, I.A., Sinitsyn, B.V., Shilov, A.A., Matrosovich, M.N.: Effects of host-dependent glycosylation of hemagglutinin on receptor-binding properties of H1N1 human influenza A virus grown in MDCK cells and in embryonated eggs. Virology 247, 170–7 (1998)PubMedGoogle Scholar
  40. 40.
    Gabius, H-J: Animal lectins. Eur. J. Biochem. 243, 543–76 (1997)CrossRefPubMedGoogle Scholar
  41. 41.
    Lindstedt, R., Apodaca, G., Barondes, S.H., Mostov, K.E., Leffler, H.: Apical secretion of a cytosolic protein by Madin-Darby canine kidney cells. J. Biol. Chem. 268, 11750–7 (1993)PubMedGoogle Scholar
  42. 42.
    Sparrow, C.P., Leffler, H., Barondes, S.H.: Multiple soluble β-galactoside-binding lectins from human lung. J. Biol. Chem. 262, 7383–90 (1987)PubMedGoogle Scholar
  43. 43.
    Kaltner, H., Seyrek, K., Heck, A., Sinowatz, F., Gabius, H-J: Galectin-1 and galectin-3 in fetal development of bovine respiratory and digestive tracts. Cell Tissue Res. 307, 35–46 (2002)CrossRefPubMedGoogle Scholar
  44. 44.
    Crocker, P.R., Varki, A.: Siglecs in the immune system. Immunology 103, 137–45 (2001)CrossRefPubMedGoogle Scholar
  45. 45.
    Razi, N., Varki, A.: Cryptic sialic acid binding lectins on human blood leukocytes can be unmasked by sialidase treatment or cellular activation. Glycobiology 9, 1225–34 1999)CrossRefPubMedGoogle Scholar
  46. 46.
    Kelm, S., Brossmer, R., Isecke, R., Gross, H-J, Strenge, K., Schauer, R.: Functional groups of sialic acids involved in binding to siglecs (sialoadhesins) deduced from interactions with synthetic analogues. Eur. J. Biochem. 255, 663–72 (1998)CrossRefPubMedGoogle Scholar
  47. 47.
    Reading, P.C., Miller, J.L., Anders, E.M.: Involvement of the mannose receptor in infection of macrophages by influenza virus. J Virol 74, 5190–7 (2000)CrossRefPubMedGoogle Scholar
  48. 48.
    Hara-Kuge, S., Ohkura, T., Seko, A., Yamashita, K.: Vesicular-integral membrane protein, VIP36, recognizes high-mannose type glycans containing α1-2 mannosyl residues in MDCK cells. Glycobiology 9, 833–9 (1999)CrossRefPubMedGoogle Scholar
  49. 49.
    Hara-Kuge, S., Ohkura, T., Ideo, H., Shimoda, O., Atsumi, S., Yamashita, K.: Involvement of VIP36 in intracellular transport and secretion of glycoproteins in polarized Madin-Darby canine kidney (MDCK) cells. J Biol Chem 277, 16332–9 (2002)CrossRefPubMedGoogle Scholar
  50. 50.
    Fiete, D., Beranek, M.C., Baenziger, J.U.: The macrophage/endothelial cell mannose receptor cDNA encodes a protein that binds oligosaccharides termining with SO4-4-GalNAcβ1,4GlcNAcβ or Man at independent sites. Proc. Natl. Acad. Sci. USA 94, 11256–61 (1997)CrossRefPubMedGoogle Scholar
  51. 51.
    Karaivanova, V., Spiro, R.G.: Sulphation of N-linked oligosaccharides of vesicular stomatitis and influenza virus envelop glycoproteins: host cell specificity, subcellular localization and identification of substituted saccharides. Biochem J 329, 511–8 (1998)PubMedGoogle Scholar
  52. 52.
    Compans, R.W., Pinter, A.: Incorporation of sulfate into influenza virus glycoproteins. Virology 66, 151–60 (1975)CrossRefPubMedGoogle Scholar
  53. 53.
    Sauter, N.K., Glick, G.D., Crowther, R.L., Park, S-J, Eisen, M.B., Skehel, J.J., Knowles, J.R., Wiley, D.C.: Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. Proc. Natl. Acad. Sci. USA 89, 324–8 (1992)PubMedGoogle Scholar
  54. 54.
    Kobasa, D., Rodgers, M.E., Wells, K., Kawaoka, Y.: Neuraminidase hemadsorption activity, conserved in avian influenza A viruses, does not influence viral replication in ducks. J. Virol. 71, 6706–13 (1997)PubMedGoogle Scholar
  55. 55.
    Varghese, J.N., Colman, P.M., van Donkelaar, A., Blick, T.J., Sahasrabudhe, A., McKimm-Breschkin, J.L.: Structural Evidence for a second sialic acid binding site in avian influenza virus neuraminidases. Proc. Natl. Acad. Sci. USA 94, 11808–12 (1997)CrossRefPubMedGoogle Scholar
  56. 56.
    Todeschini, A.R., Dias, W.B., Girard, M.F., Wieruszeski, J-M, Medonca-Previato, L.: Enzymatically inactive trans-sialidase from Trypanosoma cruzi binds sialyl and β-galactopyranosyl residues in a sequential ordered mechanism. J. Biol. Chem. 279, 5323–8 (2004)PubMedGoogle Scholar
  57. 57.
    Green, P.J., Tamatani, T., Watanabe, T., Myasaka, M., Hasegawa, A., Kiso, M., Stoll, M.S., Feizi, T.: High affinity binding of the leucocyte adhesion molecule L-selectin to 3′-sulphated-Lea and—Lex oligosaccharides and the predominance of sulphate in this interaction demonstrated by binding studies with a series of lipid-linked oligosaccharides. Biochem. Biophys. Res. Commun. 188, 244–51 (1992)CrossRefPubMedGoogle Scholar
  58. 58.
    Lo-Guidice, J-M, Wieruszeski, J-M, Lemoine, J., Verbert, A., Roussel, P., Lamblin, G.: Sialylation and sulfation of the carbohydrate chains in respiratory mucins from a patient with cystic fibrosis. J. Biol. Chem. 269, 18794–813 (1994)PubMedGoogle Scholar
  59. 59.
    Gabius, H-J, André, S., Kaltner, H., Siebert, H-C: The sugar code: functional lectinomics. Biochim. Biophys. Acta. 1572, 165–77 (2002)PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • E. M. Rapoport
    • 1
  • L. V. Mochalova
    • 1
  • H.-J. Gabius
    • 2
  • J. Romanova
    • 3
  • N. V. Bovin
    • 1
  1. 1.Shemyakin & Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Institut für Physiologische Chemie, Tierärztliche FakultätLudwig-Maximilians-UniversitätMunichGermany
  3. 3.Institute of Applied MicrobiologyUniversity of Natural Resources and Applied Life SciencesViennaAustria

Personalised recommendations