Glycoconjugate Journal

, Volume 23, Issue 1–2, pp 5–17 | Cite as

Role of sialic acid-containing molecules in paramyxovirus entry into the host cell: A minireview

  • Enrique Villar
  • Isabel Muñoz Barroso
Mini Review


Sialic acid-containing compounds play a key role in the initial steps of the paramyxovirus life cycle. As enveloped viruses, their entry into the host cell consists of two main events: binding to the host cell and membrane fusion. Virus adsorption occurs at the surface of the host cell with the recognition of specific receptor molecules located at the cell membrane by specific viral attachment proteins. The viral attachment protein present in some paramyxoviruses (Respirovirus, Rubulavirus and Avulavirus) is the HN glycoprotein, which binds to cellular sialic acid-containing molecules and exhibits sialidase and fusion promotion activities. Gangliosides of the gangliotetraose series bearing the sialic acid N-acetylneuraminic (Neu5Ac) on the terminal galactose attached in α2-3 linkage, such as GD1a, GT1b, and GQ1b, and neolacto-series gangliosides are the major receptors for Sendai virus. Much less is known about the receptors for other paramyxoviruses than for Sendai virus. Human parainfluenza viruses 1 and 3 preferentially recognize oligosaccharides containing N-acetyllactosaminoglycan branches with terminal Neu5Acα2-3Gal. In the case of Newcastle disease virus, has been reported the absence of a specific pattern of the gangliosides that interact with the virus. Additionally, several works have described the use of sialylated glycoproteins as paramyxovirus receptors. Accordingly, the design of specific sialic acid analogs to inhibit the sialidase and/or receptor binding activity of viral attachment proteins is an important antiviral strategy. In spite of all these data, the exact nature of paramyxovirus receptors, apart from their sialylated nature, and the mechanism(s) of viral attachment to the cell surface are poorly understood.


Viral receptors Paramyxovirus Gangliosides Sialidase HN glycoprotein 



Neu5Ac2en 2,3-dehydro-2-deoxy-N-acetyl neuraminic acid


deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid


2,3-didehydro-2,4-dideoxy-4-guanidino-N-acetylneuraminic acid


simian virus 5

hPIV1, 2 or 3

human parainfluenza virus 1, 2 or 3


Newcastle Disease Virus


N-acetylneuraminic acid


N-glycolylneuraminic acid


α-2-S-methyl-5-N-thioacetylneuraminic acid


Respiratory Syncitial Virus


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Svennerholm, L.: Chromatographic separation of human brain gangliosides. J. Neurochem. 10, 613–623 (1963)PubMedGoogle Scholar
  2. 2.
    Ghazal, P., Gonzalez Armas J.C., Garcia-Ramirez, J.J., Kurz, S., Angulo, A.: Viruses: hostages to the cell. Virology 275, 233–237 (2000)CrossRefPubMedGoogle Scholar
  3. 3.
    Holland, J., Domingo, E.: Origin and evolution of viruses. Virus Genes 16, 13–21 (1998)CrossRefPubMedGoogle Scholar
  4. 4.
    Baranowski, E., Ruiz-Jarabo, C.M., Pariente, N., Verdaguer, N., Domingo, E.: Evolution of cell recognition by viruses: A source of biological novelty with medical implications. In: K. Maramorosch, F.A. Murphy, J. Shatkin (Eds.) Adv. Virus Res., Elsevier Academic Press London, vol. 62, pp. 19–111 (2003)Google Scholar
  5. 5.
    Domingo, E.: Host-microbe interactions: Viruses. Complexities of virus-cell interactions. Curr. Op. Microbiol. 6, 383–385 (2003)Google Scholar
  6. 6.
    Haywood, A.M.: Virus receptors: Binding, adhesion strengthening, and changes in viral structure. J. Virol. 68, 1–5 (1994)PubMedGoogle Scholar
  7. 7.
    Lamb, R.A., Kolakofsky, D.: Paramyxoviridae: The viruses and their replication. In: D.M. Knippe, P.M. Howley, 4th edition, Fields virology, Lippincot-Williams & Wilkins, New York, 2001, pp. 1305–1340Google Scholar
  8. 8.
    Lamb, RA.: Paramyxovirus fusion: A hypothesis for changes. Virology 197, 1–11 (1993)CrossRefPubMedGoogle Scholar
  9. 9.
    Hadac, E.M., Peng, K.W., Nakamura, T., Russell, S.J.: Reengineering paramyxovirus tropism. Virology 329, 217–225 (2004)CrossRefPubMedGoogle Scholar
  10. 10.
    San Roman, K.J., Villar, E., Muñoz Barroso, M.I.: Acidic pH enhancement of the fusion of Newcastle disease virus with cultured cells. Virology 260, 329–341 (1999)PubMedGoogle Scholar
  11. 11.
    Nakamura, K., Homma, M., Compans, R.W.: Effect of tunicamycin on the replication of Sendai virus. Virology 119, 474–487 (1982)CrossRefPubMedGoogle Scholar
  12. 12.
    Morrison, T.G.: Structure, function and intracellular processing of paramyxovirus membrane proteins. Virus Res. 10, 113–136 (1988)CrossRefPubMedGoogle Scholar
  13. 13.
    Morrison, T.G., Portner, A.: Structure, function and intracellular processing of the glycoproteins in Paramyxoviridae. In: D.W. Kingsbury (Ed.) The paramyxoviruses, Plenum Press. New York, 1991, pp. 347–382Google Scholar
  14. 14.
    Yoshida, T., Takao, S., Kiyotani, K., Sakaguchi, T.: Endoproteolytic activation of Newcastle disease virus fusion proteins requires an intracellular acidic environment. Virology 170, 571–574 (1989)CrossRefPubMedGoogle Scholar
  15. 15.
    Ng, D.T., Hiebert, S.W., Lamb, R.A.: Different roles of the individual N-linked oligosaccharide chains in folding, assembly and transport of simian virus 5 hemagglutinin-neuraminidase. Moll. Cell Biol. 10, 1989–2001 (1990)Google Scholar
  16. 16.
    Hu, A., Cattaneo, R., Schwartz, S., Norrby, E.: Role of N-linked oligosaccharide chains in the processing and antigenicity of measles virus hemagglutinin protein. J. Gen. Virol. 75, 1043–1052 (1994)PubMedGoogle Scholar
  17. 17.
    Markwell, M.A., Fox, C.F.: Protein-protein interactions within paramyxoviruses identified by native disulfide bonding or reversible chemical cross-linking. J. Virol. 33, 152–166 (1980)PubMedGoogle Scholar
  18. 18.
    McGuinnes, L., Sergel, T., Morrison, T.: Mutations in the transmembrane domain of the HN protein of Newcastle disease virus affect the structure and activity of the protein. Virology 196, 101–110 (1993)Google Scholar
  19. 19.
    Garcia-Sastre, A., Cabezas, J.A., Villar, E.: Proteins of Newcastle disease virus envelope: Interaction between the outer hemagglutinin-neuraminidase glycoprotein and the inner non-glycosylated matrix protein. Biochim. Biophys. Acta. 999, 171–175 (1989)PubMedGoogle Scholar
  20. 20.
    Schmitt, A.P., Lamb, R.A.: Escaping from the Cell: Assembly and budding of negative- strand RNA viruses. Curr. Top. Microbiol. Immunol. 283, 145–196 (2004)PubMedGoogle Scholar
  21. 21.
    Klenk, H.D., Choppin, P.W.: Glycosphingolipids of plasma membranes of cultured cells and an enveloped virus (SV5) grown in this cells. Proc. Natl. Acad. Sci. USA 66, 57–64 (1970)PubMedGoogle Scholar
  22. 22.
    Klenk, H.D., Compans, R.W., Choppin, P.W., An electron microscopic study of the presence or absence of neuraminic acid in enveloped viruses. Virology 42, 1158–1162 (1970)PubMedGoogle Scholar
  23. 23.
    Porotto, M., Murrell, M., Greenhard, O., Doctor, L., Moscona, A.: Influence of the human Parainfluenza virus 3 attachment protein's neuraminidase activity on its capacity to activate the fusion protein. J. Virol. 79, 2383–2392 (2005)CrossRefPubMedGoogle Scholar
  24. 24.
    Muñoz-Barroso, I., Cobaleda, C., Zhadan, G., Shnyrov, V., Villar, E.: Dynamic properties of Newcastle Disease Virus envelope and their relations with viral hemagglutinin-neuraminidase membrane glycoprotein. Biochim. Biophys. Acta. 1327, 17–31 (1997)PubMedGoogle Scholar
  25. 25.
    Morrison, T., McQuain, C., McGinnes, L.: Complementation between avirulent Newcastle disease virus and a fusion protein gene expressed from a retrovirus vector: Requirements for membrane fusion. J. Virol. 65, 813–822 (1991)PubMedGoogle Scholar
  26. 26.
    Sergel, T., McGuinnnes, L.W., Peeples, M.E., Morrison, T.G.: The attachment function of Newcastle disease virus hemagglutinin-neuraminidase protein can be separated from fusion promotion by mutation. Virology 193, 717–726 (1993)CrossRefPubMedGoogle Scholar
  27. 27.
    Sergel, T., McGuinnes, L.W., Morrison, T.G.: The fusion promotion activity of the NDV HN protein does not correlate with neuraminidase activity. Virology 196, 831–834 (1993)CrossRefPubMedGoogle Scholar
  28. 28.
    Moscona, A., Peluso, R.W.: Fusion properties of cells persistently infected with human parainfluenza virus type 3: Participation of hemagglutinin-neuraminidase in membrane fusion. J. Virol. 65, 2773–2777 (1991)PubMedGoogle Scholar
  29. 29.
    Wild. T.F., Malvoisin, E., Buckland, R.: Measles virus: Both the hemagglutinin-neuraminidase and fusion glycoproteins are required for fusion. J. Gen. Virol. 72, 439–442 (1991)PubMedGoogle Scholar
  30. 30.
    Hu. X.L., Ray, R.: Compans RW Functional interactions between the fusion protein and hemagglutinin-neuraminidase of human parainfluenza viruses. J. Virol. 66, 1528–1534 (1992)PubMedGoogle Scholar
  31. 31.
    Heminway, B.R., Yu, Y., Galinski, M.S.: Paramyxovirus mediated cell fusion requires co-expression of both the fusion and hemagglutinin-neuraminidase glycoproteins. Virus Re. 31, 1–16 (1994)Google Scholar
  32. 32.
    Ferreira, L., Muñoz-Barroso, I., Marcos, F., Shnyrov, V.L., Villar, E.: Sialidase, receptor-binding and fusion-promotion activities of Newcastle disease virus hemagglutinin-neuraminidase glycoprotein: A mutational and kinetic study, J Gen Virol 85, 1981–1988 (2004)CrossRefPubMedGoogle Scholar
  33. 33.
    Miura, N., Uchida, T., Okada, Y.: HVJ (Sendai virus)-induced envelope fusion and cell fusion are blocked by monoclonal anti-HN protein antibody that does not inhibit hemagglutinin activity of HVJ, Exp Cell Res 141, 409–420 (1982)CrossRefPubMedGoogle Scholar
  34. 34.
    Tsurudome, M., Yamada, A., Hishiyama, M., Ito, Y.: Monoclonal antibodies against the glycoproteins of mumps virus: Fusion inhibition by anti-HN monoclonal antibody. J. Gen. Virol. 67, 2259–2265 (1986)PubMedGoogle Scholar
  35. 35.
    Iorio, R.M., Glickman, R.L., Sheehan, J.P.: Inhibition of fusion by neutralizing monoclonal antibodies to the haemagglutinin-neuraminidase glycoprotein of Newcastle disease virus. J. Gen. Virol. 73, 1167–1176 (1992)PubMedGoogle Scholar
  36. 36.
    Schuy, W., Garten, W., Linder, D., Klenk, H.D.: The carboxyterminus of the hemagglutinin-neuraminidase of Newcastle disease virus is exposed at the surface of the viral envelope. Virus Res. 1, 415–426 (1984)CrossRefPubMedGoogle Scholar
  37. 37.
    Colman, P.M., Hoyne, P.A., Lawrence, M.C.: Sequence and structure alignment of paramyxovirus hemagglutinin-neuraminidase and influenza virus neuraminidase. J. Virol. 67, 2972–2980 (1993)PubMedGoogle Scholar
  38. 38.
    Gaskell, A., Crennell, S.J., Taylor, G.: The three domains of a bacterial sialidase: a beta-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 3, 1197–1205 (1995)CrossRefPubMedGoogle Scholar
  39. 39.
    Langedijk, J.P.M., Daus, F.J., van, Oirschot J.T.: Sequence and structure alignment of Paramyxoviridae attachment proteins and discovery of enzymatic activity for a morbillivirus hemagglutinin. J. Virol. 71, 6155–6167 (1997)PubMedGoogle Scholar
  40. 40.
    Crennell, S.J., Garman, E.F., Laver, W.G., Vimr, E.R., Taylor, G.L.: Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc. Natl. Acad. Sci. USA 90, 9852–9856 (1993)PubMedGoogle Scholar
  41. 41.
    Crennell, S.J., Garman, E.F., Laver, W.G., Vimr, E.R., Taylor, G.L.: Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure 2, 535–544 (1994)CrossRefPubMedGoogle Scholar
  42. 42.
    Crennell, S.J., Takimoto, T., Portner, A., Taylor, G.: Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nature Structr. Biol. 7, 1068–1074 (2000)Google Scholar
  43. 43.
    Sagrera, A., Cobaleda, C., González de Buitrago, J.M., García-Sastre, A., Villar, E.: Membrane glycoproteins of Newcastle disease virus: nucleotide sequence of the hemagglutinin-neuraminidase cloned gene and structure/function relationships of predicted aminoacid sequence. Glycoconj. J. 18, 283–289 (2001)CrossRefPubMedGoogle Scholar
  44. 44.
    Sagrera, A., Cobaleda, C., Muñoz-Barroso, I., Shnyrov, V., Villar, E.: Modulation of the neuraminidase activity of the HN protein from Newcastle disease virus by substrate binding and conformational change: Kinetic and thermal denaturation studies. Biochem. Mol. Biol. Int. 37, 717–727 (1995)PubMedGoogle Scholar
  45. 45.
    Scheid, A., Caliguiri, L.A., Compans, R.W., Choppin, P.W.: Isolation of paramyxovirus glyproteins. Association of both hemagglutinating and neuraminidase activities with the larger SV5 glycoprotein. Virology 50, 640–652 (1972)CrossRefPubMedGoogle Scholar
  46. 46.
    Portner, A.: The HN glycoprotein of Sendai virus: Analysis of site(s) involved in hemagglutinating and neuraminidase activities. Virology 115, 375–384 (1981)CrossRefPubMedGoogle Scholar
  47. 47.
    Iorio, R.M., Bratt, M.A.: Monoclonal antibodies as functional probes of the HN glycoprotein of Newcastle disease virus: Antigenic separation of the hemagglutinin and neuraminidase sites. J. Immunol. 133, 2215–2219 (1983)Google Scholar
  48. 48.
    Ray, R., Compans, P.W.: Monoclonal antibodies reveal extensive antigenic differences between the hemagglutinin-neuraminidase glycoproteins of human and bovine parainfluenza 3 viruses. Virology 148, 232–236 (1986)CrossRefPubMedGoogle Scholar
  49. 49.
    Gorman, W.L., Gill, D.S., Scroggs, R.A., Portner, A.: The hemagglutinin-neuraminidase glycoproteins of human parainfluenza virus type 1 and Sendai virus have high structure-function similarity with limited antigenic cross-reactivity. Virology 175, 211–221 (1990)CrossRefPubMedGoogle Scholar
  50. 50.
    Garcia-Sastre, A., Cobaleda, C., Cabezas, J.A., Villar, E.: On the inhibition mechanism of the sialidase activity of Newcastle disease virus. Biol. Chem. Hoppe-Seyler 372, 923–927 (1991)PubMedGoogle Scholar
  51. 51.
    Mirza, A.M., Deng, R., Iorio, R.M.: Site-directed mutagenesis of a conserved hexapeptide in the paramyxovirus hemagglutinin-neuraminidase glycoprotein: Effects on antigenic structure and function. J. Virol. 68, 5093–5099 (1994)PubMedGoogle Scholar
  52. 52.
    Stone-Hulslander, J., Morrison, T.G.: Mutational analysis of heptad-repeats in the membrane proximal region of Newcastle disease virus HN protein. J. Virol. 73, 3630–3637 (1999)PubMedGoogle Scholar
  53. 53.
    Iorio, R.M., Field, G.M., Sauvron, J.M., Mirza, A.M., Deng, R., Mahon, P.J., Langedijk, J.P.: Structural and functional relationship between the receptor recognition and neuraminidase activities of the Newcastle disease virus hemagglutinin-neuraminidase protein: Receptor recognition is dependent on neuraminidase activity. J. Virol. 75, 1918–1927 (2001)CrossRefPubMedGoogle Scholar
  54. 54.
    Zaitsev, V., von Itzstein, M., Groves, D., Kiefel, M., Takimoto, T., Portner, A., Taylor, G.: Second sialic acid binding site in Newcastle disease virus hemagglutinin-neuraminidase: implications for fusion. J. Virol. 78, 3733–3741 (2004)CrossRefPubMedGoogle Scholar
  55. 55.
    Li, J., Quinlan, E., Mirza, A., Iorio, R.M.: Mutated form of the Newcastle disease virus hemagglutinin-neuraminidase interacts with the homologous fusion protein despite deficiencies in both receptor recognition and fusion promotion. J. Virol. 78, 5299–5310 (2004)PubMedGoogle Scholar
  56. 56.
    Ferreira, L., Villar, E., Muñoz-Barroso, I.: Gangliosides and N-glycoproteins function as Newcastle disease virus receptors. Int. J. Biochem. Cell Biol. 36, 2344–2356 (2004)CrossRefPubMedGoogle Scholar
  57. 57.
    Porotto, M., Murrell, M., Greengard, O., Lawrence, M.C., McKimm-Breschkin, J.L., Moscona, A.: Inhibition of parainfluenza virus type 3 and Newcastle disease virus hemagglutinin-neuraminidase receptor binding: effect of receptor avidity and steric hindrance at the inhibitor binding sites. J. Virol. 78, 13911–13919 (2004)CrossRefPubMedGoogle Scholar
  58. 58.
    Bousse, T., Takimoto, T., Gorman, W.L., Takahashi, T., Portner, A.: Regions on the hemagglutinin-neuraminidase proteins of human parainfluenza virus type-1 and Sendai virus important for membrane fusion. Virology 204, 506–514 (1994)CrossRefPubMedGoogle Scholar
  59. 59.
    Deng, R., Wang, Z., Glickman, R.L., Iorio, R.M.: Glycosylation within an antigenic site on the HN glycoprotein of Newcastle disease virus interferes with its role in the promotion of membrane fusion. Virology 209, 457–469 (1994)Google Scholar
  60. 60.
    Tanabayashi, K., Compans, R.W.: Functional interaction of paramyxovirus glycoproteins: identification of a domain in Sendai virus HN which promotes cell fusion. J. Virol. 70, 6112–6118 (1996)PubMedGoogle Scholar
  61. 61.
    Buchholz, C.J., Schneider, U., Devaux, P., Gerlier, D., Cattaneo, R.: Cell entry by measles virus: long hybrid receptors uncouple binding from membrane fusion. J. Virol. 70, 3716–3723 (1996)PubMedGoogle Scholar
  62. 62.
    Porotto, M., Murrell, M., Greengard, O., Moscona, A.: Triggering of human parainfluenza virus 3 fusion protein (F) by the hemagglutinin-neuraminidase (HN) protein: An HN mutation diminishes the rate of F activation and fusion. J. Virol. 77, 3647–3654Google Scholar
  63. 63.
    Tsurudome, M., Kawano, M., Yuasa, T., Tabata, N., Nishio, M., Komada. H., Ito, Y.: Identification of regions on the hemagglutinin-neuraminidase protein of human parainfluenza virus type 2 important for promoting cell fusion. Virology 213, 190–203 (1995)CrossRefPubMedGoogle Scholar
  64. 64.
    Corey, E.A., Mirza, A.M., Levandowsky, E., Iorio, R.M.: Fusion deficiency induced by mutations at the dimer interface in the Newcastle disease virus hemagglutinin-neuraminidase is due to a temperature-dependent defect in receptor binding. J. Virol. 77, 6913–6922 (2003)CrossRefPubMedGoogle Scholar
  65. 65.
    Stern, L.B.L., Greenberg, M., Gershoni, J.M., Rozenblatt, S.: The hemagglutinin envelope protein of canine distemper virus (CDV) confers cell tropism as illustrated by CDV and measles virus complementation analysis. J. Virol. 69, 1661–1668 (1995)PubMedGoogle Scholar
  66. 66.
    Griffin, D.E.: Measles virus. In Fields Virology, 4th edition, edited by Knippe DM, Howley PM (Lippincot-Williams & Wilkins, New York, 2001), pp. 1401–1441Google Scholar
  67. 67.
    Blain, F., Liston, P., Briedis, D.J.: The carboxy-terminal 18 amino acids of measles virus hemagglutinin are essential for its biological function. Biochem. Biophys. Res. Commun. 214, 1232–1238 (1995)CrossRefPubMedGoogle Scholar
  68. 68.
    Levine, S., Klaiber-Franco, R., Paradiso, P.R.: Demonstration that glycoprotein G is the attachment protein of respiratory syncytial virus. J. Gen. Virol. 68, 2521–2524 (1987)PubMedGoogle Scholar
  69. 69.
    Karron, R.A., Bounagurio, D.A., Georgiu, A.F., Whitehead, S.S., Adamus, J.E., Clements-Mann, M.L., Harris, D.O., Randolph, V.B., Udem, S.A., Murphy, B.R., Sidhu, M.S.: Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: Clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc. Natl. Acad. Sci. USA 94, 13961–13966 (1997)CrossRefPubMedGoogle Scholar
  70. 70.
    Collins, P.L., Chanok, R.M., Murphy, B.R.: Respiratory syncytial virus. In Fields Virology, 4th edition, edited by Knippe DM, Howley PM (Lippincot-Williams & Wilkins, New York, 2001), pp. 1443–1485Google Scholar
  71. 71.
    Wertz, G.W., Krieger, M., Ball, L.A.: Structure an cell surface maturation of the attachment glycoprotein of human respiratory syncytial virus in a cell line deficient on O glycosylation. J. Virol. 63, 4767–4776 (1989)PubMedGoogle Scholar
  72. 72.
    Garcia-Beato, R., Martinez, I., Franci, C., Real, F.X.: Garcia-Barreno B, Melero JA, Host cell effect upon glycosylation and antigenicity of human respiratory syncytial virus G glycoprotein. Virology 221, 301–309 (1996)PubMedGoogle Scholar
  73. 73.
    Garcia-Beato, R., Melero, J.A.: The C-terminal third of human respiratory syncytial virus attachment (G) protein is partially resistant to protease digestion and is glycosylated in a cell-type-specific manner. J. Gen. Virol. 81, 919–927 (2000)PubMedGoogle Scholar
  74. 74.
    Collins, P.L.: O glycosylation of glycoprotein G of human respiratory syncytial virus is specified within the divergent ectodomain. J. Virol. 64, 4007–4012 (1990)PubMedGoogle Scholar
  75. 75.
    Lanjedijk, J.P., de Groot, B.L., Berendsen, H.J.: van Oirschot, Structural homology of the central conserved region of the attachment protein G of respiratory syncytial virus with the fourth subdomain of 55-kDa tumour necrosis factor receptor. Virology 243, 293–302 (1998)Google Scholar
  76. 76.
    Hallak, L.K., Collins, P.L., Knudson, W., Peeples, M.E.: Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection. Virology 271, 264–275 (2000)CrossRefPubMedGoogle Scholar
  77. 77.
    Hallak, L.K., Spillmann, D., Collins, P.L., Peeples, M.E.: Glycosaminoglycan sulfation requirements for respiratory syncytial virus infection. J. Virol. 74, 10508–10513 (2000)CrossRefPubMedGoogle Scholar
  78. 78.
    Markwell, MAK.: New frontiers opened by the exploration of host cell receptors. In: D.W. Kingsbury (Ed.) The paramyxoviruses, (Plenum Press, New York, 1991), pp. 407–425 (1991)Google Scholar
  79. 79.
    Herrler, G., Hausmann, J.: Klenk, H-D, Sialic acid as receptor determinant of Ortho- and Paramyxoviruses. In: A. Rosenberg (Ed.) Biology of the Sialic Acid, (Plenum Press, New York, 1995), pp. 315–336.Google Scholar
  80. 80.
    Suzuki, T., Harada, M., Suzuki, Y., Matsumoto, M.: Incorporation of sialoglycoprotein containing lacto-series oligosaccharides into chicken asialoerythrocyte membranes and restoration of receptor activity toward hemagglutinating virus of Japan (Sendai virus). J. Biochem. (Tokyo) 95, 1193–1200 (1984)Google Scholar
  81. 81.
    Wybenga, L.E., Epand, R.F., Nir, S., Chu, J.W., Sharom, F.J., Flanagan, T.D., Epand, R.M.: Glycophorin as a receptor for Sendai virus. Biochemistry 35, 9513–9518 (1996)CrossRefPubMedGoogle Scholar
  82. 82.
    Markwell, M.A., Svennerholm, L., Paulson, J.C.: Specific gangliosides function as host cell receptors for Sendai virus. Proc. Natl. Acad. Sci. USA 78, 5406–5410 (1981)PubMedGoogle Scholar
  83. 83.
    Markwell, M.A., Moss, J., Hom, B.E., Fishman, P.H., Svennerholm, L.: Expression of gangliosides as receptors at the cell surface controls infection of NCTC 2071 cells by Sendai virus. Virology 155, 356–364 (1986)CrossRefPubMedGoogle Scholar
  84. 84.
    Markwell, M.A., Paulson, J.C.: Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants. Proc. Natl. Acad. Sci. USA 77, 5693–5697 (1980)PubMedGoogle Scholar
  85. 85.
    Umeda, M., Nojima, S., Inoue, K.: Activity of human erythrocyte gangliosides as a receptor to HVJ. Virology 133, 172–182 (1984)CrossRefPubMedGoogle Scholar
  86. 86.
    Suzuki, Y., Suzuki, T., Matsunaga, M., Matsumoto, M.: Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for hemagglutinating virus of Japan (Sendai virus) and Newcastle disease virus. J. Biochem. (Tokyo) 97, 1189–1199 (1985)Google Scholar
  87. 87.
    Suzuki, T., Portner, A., Scroggs, R.A., Uchikawa, M., Koyama, N., Matsuo, K., Suzuki, Y., Takimoto, T.: Receptor specificities of human respiroviruses. J. Virol. 75, 4604–4613 (2001)CrossRefPubMedGoogle Scholar
  88. 88.
    Hansson, G.C., Karlsson, K.A., Larson, G., Stromberg, N., Thurin, J., Orvell, C., Norrby, E.: A novel approach to the study of glycolipid receptors for viruses. Binding of Sendai virus to thin-layer chromatograms. FEBS Lett. 170, 15–18 (1984)CrossRefPubMedGoogle Scholar
  89. 89.
    Muthing, J., Unland, F.: A comparative assessment of TLC overlay technique and microwell adsorption assay in the examination of influenza A and Sendai virus specificities towards oligosaccharides and sialic acid linkages of gangliosides. Glycoconj. J. 11, 486–492 (1994)PubMedGoogle Scholar
  90. 90.
    Schnaar, R.L.: Glycosphingolipids in cell surface recognition. Glycobiology 1, 477–485 (1991)PubMedGoogle Scholar
  91. 91.
    Oku, N., Nojima, S., Inoue, K.: Studies on the interaction of Sendai virus with liposomal membranes. Sendai virus-induced agglutination of liposomes containing glycophorin. Biochim. Biophys. Acta. 646, 36–42 (1981)PubMedGoogle Scholar
  92. 92.
    Oku, N., Inoue, K., Nojima, S., Sekiya, T., Nozawa, Y.: Electron microscopic study on the interaction of Sendai virus with liposomes containing glycophorin, Biochim Biophys Acta 691, 91–96 (1982)PubMedGoogle Scholar
  93. 93.
    Suzuki, Y., Suzuki, T., Matsumoto, M.: Isolation and characterization of receptor sialoglycoprotein for hemagglutinating virus of Japan (Sendai virus) from bovine erythrocyte membrane, J Biochem (Tokyo) 93, 1621–1633 (1983)Google Scholar
  94. 94.
    Leyrer, S., Bitzer, M., Lauer, U., Kramer, J., Neubert, W.J., Sedlmeier, R.: Sendai virus-like particles devoid of haemagglutinin-neuraminidase protein infect cells via the human asialoglycoprotein receptor. J. Gen. Virol. 79, 683–687 (1998)PubMedGoogle Scholar
  95. 95.
    Mahrkwell, M.A., Portner, A., Schwartz, A.L.: An alternative route of infection for viruses: Entry by means of the asialoglycoprotein receptor of a Sendai virus mutant lacking its attachment protein. Proc. Natl. Acad. Sci. USA 82, 978–982 (1985)Google Scholar
  96. 96.
    Cobaleda, C., Muñoz-Barroso, I., Sagrera, A., Villar, E.: Fusogenic activity of reconstituted Newcastle disease virus envelopes: a role for the hemagglutinin-neuraminidase protein in the fusion process. Int. J. Biochem. Cell Biol. 34, 403–413 (2002)CrossRefPubMedGoogle Scholar
  97. 97.
    Dutch. RE., Joshi, S.B., Lamb, R.A.: Membrane fusion promoted by increasing surface densities of the paramyxovirus F and HN proteins: comparison of fusion reactions mediated by simian virus 5 F, human parainfluenza virus type 3 F, and influenza virus HA. J. Virol. 72, 7745–7753 (1998)PubMedGoogle Scholar
  98. 98.
    Barretto, N., Hallak, L.K., Peeples, M.E.: Neuraminidase treatment of respiratory syncytial virus-infected cells or virions, but not target cells, enhances cell-cell fusion and infection. Virology 313, 33–43 (2003)CrossRefPubMedGoogle Scholar
  99. 99.
    Feldman, S.A., Audet, S., Beeler, J.A.: The fusion glycoprotein of human respiratory syncytial virus facilitates virus attachment and infectivity via an interaction with cellular heparan sulfate. J. Virol. 74, 6442–6447 (2000)CrossRefPubMedGoogle Scholar
  100. 100.
    Ohki, S., Arnold, K., Srinivasakumar, N., Flanagan, T.D.: Effect of anionic polymers on fusion of Sendai virus with human erythrocyte ghosts. Antiviral. Res. 18, 163–177 (1992)CrossRefPubMedGoogle Scholar
  101. 101.
    Zschornig, O., Arnold, K., Ohki, S.: Effect of glycosaminoglycans and PEG on fusion of Sendai virus with phosphatidylserine vesicles. Biochim. Biophys. Acta. 1148, 1–6 (1993)PubMedGoogle Scholar
  102. 102.
    Bose, S., Banerjee, A.K.: Role of heparan sulfate in human parainfluenza virus type 3 infection. Virology 298, 73–83 (2002)CrossRefPubMedGoogle Scholar
  103. 103.
    Sergel, T.A., McGinnes, L.W., Morrison, T.G.: A single amino acid change in the Newcastle disease virus fusion protein alters the requirement for HN protein in fusion. J. Virol. 74, 5101–5107 (2000)CrossRefPubMedGoogle Scholar
  104. 104.
    Li, J., Melanson, V.R., Mirza, A.M., Iorio, R.M.: Decreased dependence on receptor recognition for the fusion promotion activity of L289A-mutated Newcastle disease virus fusion protein correlates with a monoclonal antibody-detected conformational change. J. Virol. 79, 1180–1190 (2005)PubMedGoogle Scholar
  105. 105.
    Eckhardt, M., Gotza, B., Gerardy-Schahn, R.: Mutants of the CMP-sialic acid transporter causing the Lec2 phenotype. J. Biol. Chem. 273, 20189–20195 (1998)CrossRefPubMedGoogle Scholar
  106. 106.
    Guerrero, C.A., Zarate, S., Corkidi, G., Lopez, S., Arias, C.F.: Biochemical characterization of rotavirus receptors in MA104 cells, J. Virol. 74, 9362–9371 (2000)Google Scholar
  107. 107.
    Arnberg, N., Kidd, A.H., Edlund, K., Olfat, F., Wadell, G.: Initial interactions of subgenus D adenoviruses with A549 cellular receptors: sialic acid versus alpha(v) integrins. J. Virol. 74, 7691–7693 (2000)CrossRefPubMedGoogle Scholar
  108. 108.
    Suzuki, Y., Ito, T., Suzuki, T., Holland, RE Jr., Chambers, T.M., Kiso, M., Ishida, H., Kawaoka, Y.: Sialic acid species as a determinant of the host range of influenza A viruses. J. Virol. 74, 11825–11831 (2000)PubMedGoogle Scholar
  109. 109.
    Kaludov, N., Brown, K.E., Walters, R.W., Zabner, J., Chiorini, J.A.: Adeno-associated virus serotype 4 (AAV4) and AAV5 both require sialic acid binding for hemagglutination and efficient transduction but differ in sialic acid linkage specificity. J. Virol. 75, 6884–6893 (2001)CrossRefPubMedGoogle Scholar
  110. 110.
    Barton, E.S., Connolly, J.L., Forrest, J.C., Chappell, J.D., Dermody, T.S.: Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J. Biol. Chem. 276, 2200–2211 (2001)CrossRefPubMedGoogle Scholar
  111. 111.
    Alexander, D.A., Dimock, K.: Sialic acid functions in enterovirus 70 binding and infection. J. Virol. 76, 11265–11272 (2002)PubMedGoogle Scholar
  112. 112.
    Puri, A., Hug, P., Munoz-Barroso, I., Blumenthal, R.: Human erythrocyte glycolipids promote HIV-1 envelope glycoprotein-mediated fusion of CD4+ cells. Biochem. Biophys. Res. Commun. 242, 219–225 (1998)CrossRefPubMedGoogle Scholar
  113. 113.
    Hug, P., Lin, H.M., Korte, T., Xiao, X., Dimitrov, D.S., Wang, J.M., Puri, A., Blumenthal, R.: Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J. Virol. 74, 6377–6385 (2000)CrossRefPubMedGoogle Scholar
  114. 114.
    Krusat, T., Streckert, H.J.: Heparin–dependent attachment of respiratory syncytial virus (RSV) to host cells. Arch. Virol. 142, 1247–1254 (1997)CrossRefPubMedGoogle Scholar
  115. 115.
    Dorig, R.E., Marcil, A., Chopra, A., Richardson, C.D.: The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993)CrossRefPubMedGoogle Scholar
  116. 116.
    Naniche, D., Varior-Krishnan, G., Cervoni, F., Wild, T.F., Rossi, B., Rabourdin-Combe, C., Gerlier, D.: Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025–6032 (1993)PubMedGoogle Scholar
  117. 117.
    Tatsuo, H., OkamaK, Tanaka, K., Yanagi, Y.: SLAM (CDw 150) is a cellular receptor for measles virus. Nature 406, 893–897 (2000)PubMedGoogle Scholar
  118. 118.
    Yanagi, Y., Ono, N., Tatsuo, H., Hashimoto, K., Minagawa, H.: Measles virus receptor SLAM (CD150). Virology 299, 155–161 (2002)CrossRefPubMedGoogle Scholar
  119. 119.
    Tatsuo, H., Ono, N., Yanagi, Y.: Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J. Virol. 75, 5842–5850 (2001)CrossRefPubMedGoogle Scholar
  120. 120.
    Eaton, B.T.: Introduction to Current focus on Hendra and Nipah viruses, Microbes. Infect. 3, 277–278 (2001)Google Scholar
  121. 121.
    Bossart, K.N., Wang, L.F., Eaton, B.T., Broder, C.C.: Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus. Virology 290, 121–135 (2001)CrossRefPubMedGoogle Scholar
  122. 122.
    Morrison, T.G.: Structure and function of a paramyxovirus fusion protein. Biochim. Biophys. Acta. 1614, 73–84 (2003)PubMedGoogle Scholar
  123. 123.
    Ferreira, L., Villar, E., Muñoz-Barroso, I.: Conformational changes of Newcastle disease virus envelope glycoproteins triggered by gangliosides. Eur. J. Biochem. 271, 581–588 (2004)CrossRefPubMedGoogle Scholar
  124. 124.
    Meindl, P., Bodo, G., Palese, P., Schulman, J., Tuppy, H.: Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid. Virology 58, 457–463 (1974)CrossRefPubMedGoogle Scholar
  125. 125.
    Palese, P., Schulman, J.L., Bodo, G., Meindl, P.: Inhibition of influenza and parainfluenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA). Virology 59, 490–498 (1974)CrossRefPubMedGoogle Scholar
  126. 126.
    Palese, P., Compans, R.W.: Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J. Gen. Virol. 33, 159–163 (1976)PubMedGoogle Scholar
  127. 127.
    Hayden, F.G., Osterhaus, A.D., Treanor, J.J., Fleming, D.M., Aoki, F.Y., Nicholson, K.G., Bohnen, A.M., Hirst, H.M., Keene, O., Wightman, K.: Efficacy and safety of the neuraminidase inhibitor zanamivir in the treatment of influenza virus infections. GG167 Influenza Study Group. N. Engl. J. Med. 337, 874–880 (1997)CrossRefPubMedGoogle Scholar
  128. 128.
    Monto, A.S.: Fleming DM, Henry D, de Groot R, Makela M, Klein T, Elliott M, Keene ON, Man CY, Efficacy and safety of the neuraminidase inhibitor zanamivirin the treatment of influenza A and B virus infections. J. Infect. Dis. 180, 254–261 (1999)CrossRefPubMedGoogle Scholar
  129. 129.
    Levin, P.S., Jordan, M., Brossmer, R., Greengard, O., Moscona, A.: The use of a quantitative fusion assay to evaluate HN-receptor interaction for human parainfluenza virus type 3. Virology 265, 57–65 (1999)Google Scholar
  130. 130.
    Greengard, O., Poltoratskaia, N., Leikina, E., Zimmerberg, J., Moscona, A.: The anti-influenza virus agent 4-GU-DANA (zanamivir) inhibits cell fusion mediated by human parainfluenza virus and influenza virus HA. J. Virol. 74, 11108–11114 (2000)CrossRefPubMedGoogle Scholar
  131. 131.
    Murrell, M., Porotto, M., Weber, T., Greengard, O., Moscona, A.: Mutations in human parainfluenza virus type 3 hemagglutinin-neuraminidase causing increased receptor binding activity and resistance to the transition state sialic acid analog 4-GU-DANA (Zanamivir). J. Virol. 77, 309–317 (2003)PubMedGoogle Scholar
  132. 132.
    Bose, S., Banerjee, A.K.: Role of heparan sulfate in human parainfluenza virus type 3 infection. Virology 298, 73–83 (2002)CrossRefPubMedGoogle Scholar
  133. 133.
    Alymova, I.V., Taylor, G., Takimoto, T., Lin, T.H., Chand, P., Babu, Y.S., Li, C., Xiong, X., Portner, A.: Efficacy of novel hemagglutinin-neuraminidase inhibitors BCX 2798 and BCX 2855 against human parainfluenza viruses in vitro and in vivo. Antimicrob. Agents Chemother. 48, 1495–1502 (2004)CrossRefPubMedGoogle Scholar
  134. 134.
    Suzuki, T., Ikeda, K., Koyama, N., Hosokawa, C., Kogure, T., Takahashi, T., Jwa Hidari, K.I., Miyamoto, D., Tanaka, K., Suzuki, Y.: Inhibition of human parainfluenza virus type 1 sialidase by analogs of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid. Glycoconj. J. 18, 331–337 (2001)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Departamento de Bioquímica y Biología Molecular, Edificio DepartamentalUniversidad de SalamancaSalamancaSpain

Personalised recommendations