Advertisement

Glass and Ceramics

, Volume 76, Issue 9–10, pp 374–380 | Cite as

Phase Transformations in High-Temperature Fiber Materials Exposed to Non-Equilibrium Flow of Heat and Light

  • V. G. BabashovEmail author
  • S. Kh. Suleimanov
  • S. Yu. Skripachev
  • O. V. Basargin
  • G. Yu. Lyulyukina
GLASS CERAMIC
  • 4 Downloads

The changes of the phase composition and structure of modern ceramic materials on exposure to an intense flow of light were investigated. The technological possibilities of a unique facility — Big Solar Furnace — were used to perform the experiment. It was shown that surface treatment of a ceramic material in the system Al2O3–SiO2 by a high-temperature source of energy results in the appearance of two new phase compositions — α-Al2O3 and cristobalite. Treatment of the material in the fusion regime promotes the formation of a eutectic component.

Key words

solar furnace ceramic fiber composite material fibrous structure 

Notes

This work was supported by RFBR grant No. 18-58-41008.

References

  1. 1.
    E. N. Kablov, “From what is the future to be made? Next-generation materials and their production and processing technologies —the basis of innovations,” Kryl’ya Rodiny, No. 5, 8 – 18 (2016).Google Scholar
  2. 2.
    E. N. Kablov, “Innovative projects at FSUE ‘VIAM’ SSC RF for implementing ‘Strategic directions for the development of materials and their processing technologies for the period until 2030,” Aviats. Mater. Tekhnol., No. 1(34), 3 – 33 (2015).Google Scholar
  3. 3.
    E. N. Kablov, “Without new materials there is no future,” Metallurg, No. 12, 4 – 8 (2013).Google Scholar
  4. 4.
    E. N. Kablov, B. V. Shchetanov, Yu. A. Ivakhnenko, and Yu. A. Balinova, “Promising high-temperature reinforcing fibers for metal and ceramic composite materials,” Tr. VIAM: Elektron. Nauch.-Tekh. Zh., No. 2, Art. 05 (2013), URL: http://www.viam-works.ru (accessed April 29, 2019).
  5. 5.
    A. A. Lugovoi, V. G. Babashov, and Yu. V. Karpov, “Thermal diffusivity of a gradient heat-insulating material,” Tr. VIAM: Elektron. Nauch.-Tekh. Zh., No. 2. Art. 02 (2014), URL: http://www.viam-works.ru (accessed April 29, 2019).
  6. 6.
    A. V. Istomin, A. S. Bespalov, and V. G. Babashov, “Imparting enhanced fire-resistance to heat-shielding material based on a mixture of inorganic and plant fibers,” Aviats. Mater. Tekhnol., No. 4, 74 – 78 (2018), DOI:  https://doi.org/10.18577/2071-9140-2018-0-4-74-78.
  7. 7.
    E. N. Kablov, “Materials for BURAN parts — innovative solutions for the formation of the sixth technological paradigm,” Aviats. Mater. Tekhnol., No. S1, 3 – 9 (2013).Google Scholar
  8. 8.
    Advanced Ceramics Technology Roadmap: Charting Our Course, US Department of Energy, Energetics, Richerson & Associates (2000), URL: https://advancedceramics.org/clientuploads/pdf/ceramics_roadmap.pdf (accessed 04/29/2019).
  9. 9.
    E. V. Barrera, Multifunctional Shielding for Future Space Systems, Department of Mechanical Engineering and Materials Science, Rice University, Houston (2010), pp. 1 – 23.Google Scholar
  10. 10.
    D. V. Graschenkov, S. A. Evdokimov, B. E. Zhestkov, et al., “Investigation of the thermochemical flow of air plasma onto a high-temperature ceramic composite material,” Aviats. Mater. Tekhnol., 2017, No. 2(47), 31 – 40 (2017), DOI:  https://doi.org/10.18577/2071-9140-2017-0-2-31-40.
  11. 11.
    H. Wartenberg and H. Werth, “Schmelzdiagramme hochstfeuerfester Oxyde II,” Z. für Anorganische und Allegemeine Chemie, 190(1), 178 – 184 (1930); DOI:  https://doi.org/10.1002/zaac.19301900116 CrossRefGoogle Scholar
  12. 12.
    R. R. Aparisi, “Experimental setup for obtaining high temperatures,” in: Using Solar Energy [in Russian], Akad. Nauk SSSR, Moscow (1957), Issue 1, pp. 151 – 162.Google Scholar
  13. 13.
    S. Kh. Suleymanov and A. G. Bugakov, A Method of Melting in a Directed Flow of Energy, USSR Pat. 1719 811; IPC F24J 2/42 [in Russian], No. 4800095, declared 03/11/1990, publ.03/15/1992.Google Scholar
  14. 14.
    V. A. Baum, “Status of the question of calculating and designing solar furnaces,” in: Solar High-Temperature Furnaces [in Russian], Moscow (1960), pp. 5 – 30.Google Scholar
  15. 15.
    I. V. Baum, Solar Power Plants and High-Temperature Installations: Power Engineering of Optical Systems and Simulation Models, Author’s Abstract of Doctoral’s Thesis [in Russian], Ashkhabad (1980).Google Scholar
  16. 16.
    M. Vlasova, M. Kakazey, A. C. Hernandez, et al., “Surface changes in Al2O3-base composite ceramics under action of laser treatment,” Ceram. Int., 45(5), 5454 – 5466 (2019), URL:  https://doi.org/10.1016/j.ceramint.2018.11.249 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • V. G. Babashov
    • 1
    Email author
  • S. Kh. Suleimanov
    • 2
  • S. Yu. Skripachev
    • 1
  • O. V. Basargin
    • 1
  • G. Yu. Lyulyukina
    • 1
  1. 1.All-Russia Institute of Aviation Materials (VIAM)MoscowRussia
  2. 2.Institute of Materials Science – NPO ‘Physics-Sun’Academy of Sciences of UzbekistanTashkentUzbekistan

Personalised recommendations