Advertisement

Glass and Ceramics

, Volume 76, Issue 9–10, pp 370–373 | Cite as

Femtosecond Laser Modification of Antimony-Containing Lithium-Aluminum-Silicate Glass and Transparent Sitall Obtained from It

  • V. N. SigaevEmail author
  • A. S. Lipat’ev
  • S. S. Fedotov
  • S. V. Lotarev
  • G. Yu. Shakhgil’dyan
  • A. S. Naumov
  • V. I. Savinkov
Article
  • 16 Downloads

The particulars of the action of a femtosecond laser beam on antimony-containing lithium-aluminum-silicate glass and the close to zero CLTE sitall obtained from this glass by heat-treatment were studied in a wide temperature range. In both the non-thermal and thermal laser action regimes local refractive index reduction is demonstrated in the laser modified regions of the sitall, reaching 0.002 in the non-thermal regime. The main reason for refractive index reduction is, by all appearances, partial amorphization of the crystal phase of β-eucryptite.

Key words

index of refraction lithium-aluminum-silicate glass laser modification optical sitalls Raman scattering spectroscopy 

Notes

This work was supported by the Russian Science Foundation (grant 19-19-00613).

References

  1. 1.
    R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nature Photonics, 2, 219 – 225 (2018).CrossRefGoogle Scholar
  2. 2.
    A. Marcinkevièius, S. Juodkazis, A. Watanabe, et al., “Femtosecond laser-assisted three-dimensional microfabrication in silica,” Opt. Lett., 26, 277 – 279 (2001).CrossRefGoogle Scholar
  3. 3.
    S. Nolte, M. Will, A. Burghoff, and A. Tuennermann, “Femtosecond waveguide scribing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A, 77, 109 – 111 (2003).CrossRefGoogle Scholar
  4. 4.
    M. Beresna, M. Gecevièius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett., 98, 201101 (2011).CrossRefGoogle Scholar
  5. 5.
    T. T. Fernandez, M. Sakakura, S. M. Eaton, et al., “Bespoke photonic devices using ultrafast laser driven ion migration in glasses,” Prog. Mater. Sci., 94, 68 – 113 (2018).CrossRefGoogle Scholar
  6. 6.
    F. Sima, K. Sugioka, and R. M. Vazquez, “Three-dimensional femtosecond laser processing for lab-on-a-chip applications,” Nanophotonics, 7, 613 – 634 (2018).CrossRefGoogle Scholar
  7. 7.
    S. Richter, C. Miese, S. Döring, et al., “Laser induced nanogratings beyond fused silica – periodic nanostructures in borosilicate glasses and ULEtm,” Opt. Mater. Express, 3, 1161 – 1166 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Richter, D.Möncke, F. Zimmermann, et al., “Ultrashort pulse induced modification in ULE – from nanograting formation to laser darkening,” Opt. Mater. Express, 5, 1834 – 1850 (2015).CrossRefGoogle Scholar
  9. 9.
    I. Efthimiopoulos, D. Palles, S. Richter, et al., “Femtosecond laser-induced transformations in ultra-low expansion glass: Microsctructure and local density variations by vibrational spectroscopy,” J. Appl. Phys., 123, 233105(1 – 16) (2018).CrossRefGoogle Scholar
  10. 10.
    V. R. Bhardwaj, E. Simova, P. B. Corkum, and D. M. Rayner, “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97, 083102(1 – 9) 2005).CrossRefGoogle Scholar
  11. 11.
    V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: Effect of phosphorus, lithium, and barium oxides on the crystallization properties,” Steklo Keram., No. 10, 21 – 24 (2014); V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: Effect of phosphorus, lithium, and barium oxides on the crystallization properties,” Glass Ceram., 71, 356 – 359 (2015).Google Scholar
  12. 12.
    V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: effect of the form of raw materials on the melting and crystallization properties,” Steklo Keram., No. 7, 3 – 7 (2014); V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, et al., “Glass formation and crystallization of lithium-aluminum-silicate glass: effect of the form of raw materials on the melting and crystallization properties,” Glass Ceram., 71, 225 – 228 (2014).Google Scholar
  13. 13.
    E. I. Grishina, V. I. Sigaev, E. E. Stroganova, et al., “Crystallization of lithium-aluminum-silicate glasses with antimony oxide as an additive,” Usp. Khim. Khim. Tekh., 28(8), 35 – 38 (2014).Google Scholar
  14. 14.
    V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, and A. N. Ignatov, A method of Obtaining Optical Sitall, RF Patent No. 2569703 C03C 10/12 [in Russian], publ. April 27, 2009.Google Scholar
  15. 15.
    S. M. Eaton, H. Zhang, P. R. Herman, et al., “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express, 13, 4708 – 4716 (2018).CrossRefGoogle Scholar
  16. 16.
    A. G. Okhrimchuk, A. V. Shestakov, I. Khrushchev, and J. Mitchell, “Depressed cladding, buried waveguide laser formed in a YAG:Nd3+ crystal by femtosecond laser writing,” Opt. Lett., 30, 2248 – 2250 (2005).CrossRefGoogle Scholar
  17. 17.
    M. Kang, L. Sisken, J. Cook, et al., “Refractive index patterning of infrared glass ceramics through laser-induced vitrification,” Opt. Mat. Express, 8(9), 2722 – 2733 (2018).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • V. N. Sigaev
    • 1
    Email author
  • A. S. Lipat’ev
    • 1
  • S. S. Fedotov
    • 1
  • S. V. Lotarev
    • 1
  • G. Yu. Shakhgil’dyan
    • 1
  • A. S. Naumov
    • 1
  • V. I. Savinkov
    • 1
  1. 1.D. I. Mendeleev Russian University of Chemical TechnologyMoscowRussia

Personalised recommendations