Advertisement

Glass and Ceramics

, Volume 76, Issue 9–10, pp 346–350 | Cite as

Vibrocompaction of Lead-Free Piezoceramic Material Based on Solid Solutions of Potassium and Sodium Niobates

  • S. G. PonomarevEmail author
  • A. V. Smirnov
  • A. V. Reznichenko
  • A. A. Vasin
  • V. P. Tarasovskii
  • A. D. Shlyapin
  • I. S. Solov’ev
Article
  • 11 Downloads

The possibility of obtaining samples of lead-free piezoceramic by vibromolding under pressing pressure < 0.3 MPa is studied. The experiments were performed on the material K0.49Na0.49Sr0.02NbO3 synthesized by the standard ceramic technology of solid-phase synthesis. The samples of the piezoceramic fabricated by vibromolding are similar in terms of their properties to those obtained by static pressing under pressure 100 – 150 MPa. The advantages of the vibrocompaction process are: lower expenditures on tooling and equipment, smaller elastic deformation, and higher product density.

Keywords

lead-free piezoceramic solid solutions of potassium and sodium niobates vibromolding static compaction 

Notes

This work received financial support from the Ministry of Education and Science of the Russian Federation as part of the state task No. 0699-2017-0007 (No. 11.3560.2017/PCh), dated May 31, 2017, using equipment from the Collective Use Center ‘Science-intensive technologies in machine engineering at Moscow Polytech.’

References

  1. 1.
    B. Jaffe, Piezoelectric Ceramics, Elsevier (2012), Vol. 3.Google Scholar
  2. 2.
    G. H. Haertling, “Ferroelectric ceramics: history and technology,” J. Am. Ceram. Soc., 82(4), 797 – 818 (1999).CrossRefGoogle Scholar
  3. 3.
    P. K. Panda and B. Sahoo, “PZT to lead free piezo ceramics: a review,” Ferroelectrics, 474(1), 128 – 143 (2015).CrossRefGoogle Scholar
  4. 4.
    J. Rödel, K. G. Webber, R. Dittmer, et al., “Transferring lead-free piezoelectric ceramics into application,” J. Eur. Ceram. Soc., 35(6), 1659 – 1681 (2015).CrossRefGoogle Scholar
  5. 5.
    P. I. D. Label and P. Label, oHS Compliance Engineer R. Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (2005).Google Scholar
  6. 6.
    J. Wu, D. Xiao, and J. Zhu, “Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries,” Chem. Rev., 115(7), 2559 – 2595 (2015).CrossRefGoogle Scholar
  7. 7.
    X. Wang, J. Wu, D. Xiao, et al., “Giant piezoelectricity in potassium-sodium niobate lead-free ceramics,” J. Am. Ceram. Soc., 136(7), 2905 – 2910 (2014).Google Scholar
  8. 8.
    L. Liu, “Progress on the fabrication of lead-free textured piezoelectric ceramics: perspectives over 25 years,” J. Mater. Sci.: Materials in Electronics, 26(7), 4425 – 4437 (2015).Google Scholar
  9. 9.
    K. Okadzaki, Technology of Ceramic Dielectrics [Russian translation], Énergiya, Moscow (1976).Google Scholar
  10. 10.
    I. G. Shatalova, N. S. Gorbunov, and V. I. Likhtman, Physicochemical Principles of Vibratory Compaction of Powdered Materials [in Russian], Nauka, Moscow (1965).Google Scholar
  11. 11.
    I. I. Blekhman, Vibrational Mechanics [in Russian], Nauka, Moscow (1994).Google Scholar
  12. 12.
    A. V. Smirnov, M. M. Marttyanov, A. U. Omarov, and A. D. Shlyapin, “Study of the effect of vibrocompaction modes, shape of particles and their size distribution on packing density,” in: IOP Conf. Ser.: Mater. Sci. Eng., 479(1), 012087 (2019).CrossRefGoogle Scholar
  13. 13.
    X. Z. An, Li Ch, R. Yang, et al., “Experimental study of the packing of mono-sized spheres subjected to one-dimensional vibration,” Powder Technology, 196(1), 50 – 55 (2009).CrossRefGoogle Scholar
  14. 14.
    B. Malic, J. Bernard, J. Holc, et al., “Strontium doped K0.5Na0.5NbO3 based piezoceramics,” Ferroelectrics, 314(1), 149 – 156 (2005).CrossRefGoogle Scholar
  15. 15.
    J. Hreščak, G. Dražić, M. Deluca, et al., “Donor doping of K0.5Na0.5NbO3 ceramics with strontium and its implications to grain size, phase composition and crystal structure,” J. Eur. Ceram. Soc., 37(5), 2073 – 2082 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • S. G. Ponomarev
    • 1
    Email author
  • A. V. Smirnov
    • 1
  • A. V. Reznichenko
    • 1
  • A. A. Vasin
    • 1
  • V. P. Tarasovskii
    • 1
    • 2
  • A. D. Shlyapin
    • 1
  • I. S. Solov’ev
    • 1
  1. 1.Moscow Polytechnic University (Moscow Polytech)MoscowRussia
  2. 2.Scientific-Technical Center BakorMoscowRussia

Personalised recommendations