Glass and Ceramics

, Volume 76, Issue 7–8, pp 290–296 | Cite as

Synthesis, Structure, and Properties of Single- and Multicomponent Additives for Aluminum Oxide Based Ceramic Materials (Review)

  • D. M. TkalenkoEmail author
  • V. A. Voronov

Single- and multi-component sintering additives for aluminum oxide ceramics are presented. It was determined from the published data that because of their higher melting temperatures and the impossibility of simultaneously influencing a number of properties of the desired material single-component additives are less effective than multi-component additives. Because of synergy multi-component additives makes it possible to simultaneously improve the properties of sintered samples based on aluminum oxide, specifically, greater compaction (porosity about 0.1%) of the samples, sintering temperature reduction to 1400°C, preservation of a fine-crystalline structure (average grain size about 3 μm), higher crack resistance about 5.86 MPa · m1/2, and higher ultimate strength in bending about 600 MPa.

Key words

aluminum oxide multi-component additives ceramic composite materials solution firing synthesis 


  1. 1.
    V. L. Balkevich, Technical Ceramics [in Russian], Stroiizdat, Moscow (1984).Google Scholar
  2. 2.
    P. P. Budnikov,New Ceramics [in Russian], Stroiizdat, Moscow (1969).Google Scholar
  3. 3.
    A. M. Cherepanov and S. G. Tresvyatskii, Highly Refractory Materials and Products Made from Oxides [in Russian], Metallurgizdat, Moscow (1962).Google Scholar
  4. 4.
    G. Rossi and J. E. Burke, “Influence of additives on the microstructure of sintered Al2O3,” J. Am. Ceram. Soc., 56(12), 654 – 659 (1973).CrossRefGoogle Scholar
  5. 5.
    D. N. Poluboyarinov, V. L. Balkevich, and R. Ya. Popilsky, High-Alumina Ceramic and Refractory Materials [in Russian], Gosstroiizdat, Moscow (1960).Google Scholar
  6. 6.
    M. Sathiyakumar and F. D. Gnanam, “Influence of MnO andTiO2 additives on density, microstructure, and mechanical properties of Al2O3,” Ceram. Int., 28, 195 – 200 (2002).CrossRefGoogle Scholar
  7. 7.
    P. M. Pletnev, “Technology of producing corundum armor ceramics modified with complex additives,” Izv. Tomsk. Politekh. Univ., 326(3), 40 – 49 (2015).Google Scholar
  8. 8.
    Yu. A. Balinova, T. M. Scheglova, G. Yu. Lyulyukina, and A. S. Timoshin, “Particulars of α Al2O3 formation in polycrystalline fibers with a 99% aluminum oxide content in the presence of the additives Fe2O3, MgO, SiO2,”Tr.VIAM: Elektron. Nauch.-Tekhn. Zh., No. 3, Art. 03 (2014); URL: (access date: 02/01/2019). DOI: 10.18577/2307-6046-2014-0-3-3-3.CrossRefGoogle Scholar
  9. 9.
    K. L. Gavrilov, S. J. Bennison, K. R. Mikeska, and R. Levi- Setti, “Role of magnesia and silica in the alumina microstructure evolution,” J. Mater. Sci., 38, 3965 – 3972 (2003).Google Scholar
  10. 10.
    Aung Zhuo Moe, N. A. Popova, and E. S. Lukin, “Composite ceramics based on electrofused corundum with eutectic additive in the system Al2O3–TiO2–MnO,” Usp. Khim. Khim. Tekhn.,31(3), 10 – 12 (2017). 11. E. V. Malikova, Yu. K. Nepochatov, P.M. Pletnev, et al., “Effect of additions of yttrium and magnesium oxides on the characteristics of corundum armor ceramics,” Ogneup. Tekh. Keram., No. 4 – 5, 35 – 39 (2013).Google Scholar
  11. 11.
    Yu. K. Nepochatov, E. V. Malikova, P. M. Pletnev, and A. A. Bogaev, “Influence of complex additives on sintering and armor properties of corundum ceramics,” Ogneup. Tekh. Keram., No. 10, 14 – 19 (2013).Google Scholar
  12. 12.
    N. V. Sharova, N. A. Popova, and E. S. Lukin, “Ceramic from Al2O3 for substrates of integrated circuits,” Usp. Khim. Khim. Tekh., 30(7), 130 – 131 (2016).Google Scholar
  13. 13.
    D. V. Akinshin, A. V. Soloshchev, M. A. Vartanyan, and N. A. Makarov, “Studying the kinetics of sintering of corundum ceramics with the addition of eutectic composition,” Usp. khim. Khim. Tekh., 31(1), 91 – 93 (2017).Google Scholar
  14. 14.
    V. A. Voronov, A. O. Shvetsov, S. P. Gubin, et al., “Influence of the method of obtaining the cathode material with the composition LiNi0.33Mn0.33Co0.33O2 on the electrochemical characteristics of lithium-ion battery,” Zh. Neorg. Khim., 61(9), 1211 – 1217 (2016).Google Scholar
  15. 15.
    E. A. Kolesnikov, I. I. Puzik, N. N. Stepareva, et al., “The influence of synthesis conditions on the dehydration of aluminum oxide obtained by chemical precipitation,” Perspekt. Mater. No. 11, 316 – 320 (2011).Google Scholar
  16. 16.
    E. E. Nazarov, M. A. Vartanyan, and N. A. Makarov, “Convective drying as a method of producing xerogel for the synthesis of sintering additives by the sol-gel method,” Usp. Khim. Khim. Tekh., 31(3), 75 – 77 (2017).Google Scholar
  17. 17.
    N. E. Kotlovanova, A. N. Matveeva, Sh. O. Omarov, et al., “Formation and acid properties of the surface of finely dispersed η-Al2O3 nanopowders,” Neorg. Mater., 54(4), 410 – 418 (2018).CrossRefGoogle Scholar
  18. 18.
    A. E. Sychev and A. G. Merzhanov, “Self-propagating high-temperature synthesis of nanomaterials,” Usp. Khim. Khim. Tekh., No. 73(2), 157 – 170 (2004).Google Scholar
  19. 19.
    A. G. Tarasov, V. A. Gorshkov, and V. I. Yukhvid, “Phase composition and microstructure of solid solutions of the Al2O3–Cr2O3 system obtained by the method of self-propagating high-temperature synthesis,” Neorg. Mater., 43(7), 819 – 823 (2007).CrossRefGoogle Scholar
  20. 20.
    K. C. Patil, M. S. Hegde, and Tanu Rattan, Chemistry of Nanocrystalline Oxide Materials Combustion Synthesis, Properties and Applications, World Scientific Publishing Co. Pte. Ltd., Singapore (2008), pp. 42 – 58Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.All-Russia Scientific-Research Institute of Aviation MaterialsMoscowRussia
  2. 2.D. I. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations