Advertisement

Glass and Ceramics

, Volume 76, Issue 5–6, pp 219–224 | Cite as

Study of Electrode Materials Based on Mixtures of Rare-Earth Metal, Titanium, and Ruthenium Oxides

  • M. K. Isaev
  • L. A. Goncharova
  • V. T. Novikov
  • A. V. KolesnikovEmail author
COATINGS
  • 14 Downloads

Samples of electrodes with an active layer based on TiO2, RuO2 , IrO2 , and oxides of the rare-earth elements Ce, La, Nd, Pr, Gd, and others were obtained, and their electrochemical behavior was studied. The zero-current potential was determined. The rates of the anionic chlorine and oxygen evolution processes and the impact of the heat-treatment temperature of the final layer on the electrochemical characteristics are presented as functions of the composition of the electrode.

Key words

Ru Ir Ti Ce oxides electrode zero-current potential chlorine evolution oxygen evolution rare-earth elements 

Notes

This work was supported by the Ministry of Science and Higher Education of the Russian Federation as part of the state task (design part) No. 10.3814.2017/PCh.

References

  1. 1.
    V. A. Kolesnikov, V. T. Novikov, M. K. Isaev, et al., “Investigation of electrodes with an active layer of a mixture of the oxides TiO2 , RuO2 , SnO2 ,” Steklo Keram., No. 4, 26 – 32 (2018); V. A. Kolesnikov, V. T. Novikov, M. K. Isaev, et al., “Investigation of electrodes with an active layer of a mixture of the oxides TiO2 , RuO2 , SnO2 ,” Glass Ceram., 75(3 – 4), 148 – 153 (2018).Google Scholar
  2. 2.
    F. Liu, L. Ma, X. B. Li, and Y. G. Yan, “Study on the degradation of dye solution using Ti/IrO2–RuO2 electrode,” in: Water Resources and Environment. Proc. of the Intern. Conf. on Water Resources and Environment (2016), pp. 119 – 123.Google Scholar
  3. 3.
    C. Zhang, D. Tang, and X. Íu, “Scalable synthesis and excellent catalytic effect of hydrangea-like RuO2 mesoporous materials for lithium-O2 batteries,” Energy Storage Mater., 2, 8 – 13 (2016).CrossRefGoogle Scholar
  4. 4.
    O. V. Yarovaya, D. O. Lemeshev, U. L. Mostovaya, et al., “Production of flat ceramic membrane contactors with a catalytically active layer based on Co3O4 ,” Steklo Keram., No. 1, 20 – 23 (2016); O. V. Yarovaya, D. O. Lemeshev, U. L. Mostovaya, et al., “Production of flat ceramic membrane contactors with a catalytically active layer based on Co3O4 ,” Glass Ceram., 73(1 – 2), 19 – 21 (2016).Google Scholar
  5. 5.
    M. Morimitsu, H. Tamura, M. Matsunaga, et al., “Polarization behaviour and lifetime of IrO2–Ta2O5–SnO2 /Ti anodes in phenolsulfonic acid solutions for tin plating,” J. Appl. Electrochem., 30(4), 511 – 514 (2000).CrossRefGoogle Scholar
  6. 6.
    E. Horvath, J. Kristof, R. L. Frost, et al., “Investigation of IrO2 /SnO2 thin film evolution by thermoanalytical and spectroscopic methods,” J. Thermal Anal. Calorim., 78(2), 687 – 695 (2004).CrossRefGoogle Scholar
  7. 7.
    C. P. De Pauli and S. Trasatti, “Electrochemical surface characterization of IrO2 + SnO2 mixed oxide electrocatalysts,” J. Electroanalyt. Chem., 396(1–2), 161 – 168 (1995).CrossRefGoogle Scholar
  8. 8.
    C. P. De Pauli and S. Trasatti, “Composite materials for electrocatalysis of O2 evolution: IrO2 + SnO2 in acid solution,” J. Electroanalyt. Chem., 538, 145 – 151 (2002).CrossRefGoogle Scholar
  9. 9.
    X. Chen and G. Chen, “Stable Ti/RuO2–Sb2O5–SnO2 electrodes for O2 evolution,” Electrochim. Acta, 50(20), 4155 – 4159 (2005).CrossRefGoogle Scholar
  10. 10.
    J. Ribeiro and A. R. De Andrade, “Characterization of RuO2/ Ta2O5 coated titanium electrode microstructure, morphology, and electrochemical investigation,” J. Electrochem. Soc., 151(10), D106 – D112 (2004).CrossRefGoogle Scholar
  11. 11.
    L. Du, J. Wu, and C. Hu, “Electrochemical oxidation of Rhodamine B on RuO2–PdO–TiO2 /Ti electrode,” Electrochim. Acta, 68, 69 – 73 (2012).CrossRefGoogle Scholar
  12. 12.
    Xu wen X, C. Zhen, and L. Fuping, “Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using Ti/RuO2–IrO2 electrodes,” Chem. Technol. Biotechnol., No. 8, 1568 – 1575 (2013).Google Scholar
  13. 13.
    P. C. Deng, G.Wang, J. Z. Hu, and K.W. Tian, “Electrochemical depolymerization of chitosans using the IrO2 electrode with interlayers as anode,” Mater. Sci. Forum, 847, 281 – 286 (2016).CrossRefGoogle Scholar
  14. 14.
    C. Hernandez-Mejia, E. S. Gnanakumar, A. Olivos-Suarez, and J. Gascon, “Ru/TiO2-catalysed hydrogenation of xylose: the role of the crystal structure of the support,” Catal. Sci. Technol., 6, 577 – 582 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Cherevko, S. Geiger, O. Kasian, et al., “Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability,” Catalysis Today, 262, 170 – 180 (2016).CrossRefGoogle Scholar
  16. 16.
    E. Yu. Liberman, A. I. Mikhailichenko, T. N. Malysheva, et al., “Preparation and thermal stability of nanodisperse bicomponent materials in the system SnO2–CeO2 ,” Steklo Keram., No. 9, 18 – 21 (2017); E. Yu. Liberman, A. I. Mikhailichenko, T. N. Malysheva, et al., “Preparation and thermal stability of nanodisperse bicomponent materials in the system SnO2–CeO2,” Glass Ceram., 74(9 – 10), 319 – 322 (2017).Google Scholar
  17. 17.
    A. V. Tolstov, N. P. Pokhilenko, and N. Yu. Samsonov, “New possibilities of obtaining rare-earth elements from a single arctic raw-materials source,” Zh. Sibirsk. Federal. Univ., Khimiya, No. 10(1), 125 – 138 (2017).Google Scholar
  18. 18.
    T. Audichon, S. Morisset, T. W. Napporn, et al., “Effect of adding CeO2 to RuO2–IrO2 mixed nanocatalysts: Activity towards the oxygen evolution reaction and stability in acidic media,” ChemElectroChem., 2(8), 1128 – 1137 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. K. Isaev
    • 1
  • L. A. Goncharova
    • 1
  • V. T. Novikov
    • 1
  • A. V. Kolesnikov
    • 1
    Email author
  1. 1.D. I. Mendeleev Russian University of Chemical Technology (RKhTU)MoscowRussia

Personalised recommendations