Advertisement

Glass and Ceramics

, Volume 76, Issue 5–6, pp 203–209 | Cite as

Gelation, Phase-Formation, and Sintering Processes in the Sol-Gel Method of Producing Aluminosilicate Glass-Ceramic Modified by Refractory Hafnium and Zirconium Oxides

  • A. S. ChainikovaEmail author
  • V. S. Kovaleva
  • D. A. Zabelin
  • I. O. Belyachenkov
GLASS-CERAMIC
  • 11 Downloads

Glass-ceramic based on compositions in the system Sr(Ba)–Al2O3–SiO2, modified by additions of zirconium oxide ZrO2 and hafnium oxide HfO2 with and without yttrium as a stabilizer, was synthesized by the sol-gel method. It was shown that the introduction of refractory oxides shortens the gelation time of the initial solutions, intensifies the sintering of the glass-ceramic, and changes the temperature intervals of phase formation processes and the nature of the precipitated crystalline phases. The sol-gel method made it possible to obtain a uniform distribution of the modifier-oxide grains in the bulk of the glass-ceramic. The yttrium oxide in the structure of the materials is concentrated near ZrO2 and HfO2 particles.

Key words

glass-ceramic strontium anorthite celsian SrO–Al2O3–SiO2 BaO–Al2O3–SiO2 sol-gel gelation crystallization sintering 

Notes

This research was supported by an RSF grant (project No. 18-73-00325).

References

  1. 1.
    G. H. Beall, “Refractory glass-ceramics based on alkaline earth aluminosilicates,” J. Europ. Ceram. Soc., No. 29, 1211 – 1219 (2009).CrossRefGoogle Scholar
  2. 2.
    Y. M. Sung and S. Kim, “Sintering and crystallization of off-stoichiometric SrO · Al2O3· 2SiO2 glasses,” J. Mater. Sci., No. 35, 4293 – 4299 (2000).Google Scholar
  3. 3.
    A. S. Chainikova, M. V. Voropaeva, L. A. Alekseeva, et al., “The current state of R&D in the field of radiolucent cordierite glass materials,” Aviats. Mater. Tekhnol., No. S6, 45 – 51 (2014); DOI: 10.18577_2071-9140-2014-0-s6-45-51.Google Scholar
  4. 4.
    E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Glass and ceramics based high-temperature composite materials for use in aviation technology,” Steklo Keram., No. 4, 7 – 11 (2012); E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, et al., “Glass and ceramics based high-temperature composite materials for use in aviation technology,” Glass Ceram., 69(3 – 4), 109 – 112 (2012).Google Scholar
  5. 5.
    E. N. Kablov, D. V. Grashchenkov, N. V. Isaeva, and S. St. Solntsev, “Promising high-temperature ceramic composite materials,” Ross. Khim. Zh., 54(1), 20 – 24 (2010).Google Scholar
  6. 6.
    E. N. Kablov, “Innovative R&D at the Federal State Unitary Enterprise VIAM of the State Research Center of the Russian Federation on the implementation of ‘Strategic directions for the development of materials and technologies of their processing for the period to 2030,” Aviats. Mater. Tekhnol., No. 1, 3 – 33 (2015); DOI: 10.18577_2071-9140-2015-0-1-3-33.Google Scholar
  7. 7.
    A. S. Chainikova, L. A. Orlova, N. V. Popovich, et al., “Dispersion-hardened composites based on glass/glass-ceramic matrices: properties and applications,” Aviats. Mater. Tekhnol., No. 3, 45 – 54 (2014); DOI: 10.18577_2071-9140-2014-0-3-45-54.Google Scholar
  8. 8.
    F. Ye, L. Liu, J. Zhang, and Q. Meng, “Synthesis of 30 wt % BAS/Si3N4 composite by spark plasma sintering,” Composites Sci. Technol., No. 68, 1073 – 1079 (2008).Google Scholar
  9. 9.
    A. S. Chainikova, D. V. Grashchenkov, M. L. Vaganova, and S. Yu. Modin, “Application of spark plasma sintering in the synthesis of composite materials based on aluminosilicate glass ceramics reinforced with silicon nitride,” Kompozity Nanostrukt., 8(3), 174 – 186 (2016).Google Scholar
  10. 10.
    F. Ye, L. Liu, J. Zhang, et al., “Synthesis of silicon nitride barium aluminosilicate self-reinforced ceramic composite by a two-step pressureless sintering,” Composites Sci. Technol., No. 65, 2233 – 2239 (2005).CrossRefGoogle Scholar
  11. 11.
    R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, “Transformation toughening in zirconia-containing ceramics,” J. Am. Ceram. Soc., 83, 461 – 487 (2000).CrossRefGoogle Scholar
  12. 12.
    A. G. Evans and R. M. Cannon, “Toughening of brittle solids by martensitic transformation. Overview No. 48,” Acta Metall., 34(5), 761 – 800 (1986).CrossRefGoogle Scholar
  13. 13.
    D. V. Grashchenkov, M. L. Vaganova, N. E. Schegoleva, et al., “High-temperature glass-crystalline material barium aluminosilicate composition obtained using sol-gel synthesis, and composite materials based on it,” Aviats. Mater. Tekhnol., No. S, 290 – 305 (2017). DOI: 10.18577_2071-9140-2017-0-S-290-305.Google Scholar
  14. 14.
    Narottam P. Bansal, SiC Fiber-Reinforced Celsian Composites: Handbook of Ceramic Composites, Kluwer Academic Publisher, Norwell, MA(2005).Google Scholar
  15. 15.
    Yu. K. Voronko, A. A. Sobol, and V. Ye. Shukshin, “Monoclinic-tetragonal phase transition in hafnium oxide: studies by high-temperature Raman spectroscopy,” Solid State Phys., 49(10), 1871 – 1875 (2007).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. S. Chainikova
    • 1
    Email author
  • V. S. Kovaleva
    • 1
  • D. A. Zabelin
    • 1
  • I. O. Belyachenkov
    • 1
  1. 1.All-Russia Scientific-Research Institute of Aviation MaterialsMoscowRussia

Personalised recommendations