Advertisement

Glass and Ceramics

, Volume 76, Issue 3–4, pp 137–141 | Cite as

Formation of Zr–La–O Oxide Phases in the Thermochemical Transformation of Modified Zirconium Hydroxide

  • A. V. ObukhovaEmail author
  • L. I. Kuznetsova
  • G. N. Bondarenko
  • O. Yu. Fetisova
  • E. V. Mazurova
  • P. N. Kuznetsov
Article
  • 3 Downloads

The particularities of the impact of the addition of lanthanum cations on the thermochemical behavior of modified zirconium hydroxide were investigated. It is shown that the composition and properties of the obtained materials are determined by the concentration of the modifier and the formation temperature of the oxide phase.

Key words

cationic promotion zirconium hydroxide stable and metastable modifications of zirconium dioxide stabilization phase transformations 

References

  1. 1.
    S. Akbar, P. Dutta, and C. Lee, “High-temperature ceramic gas sensors: a review,” Int. J. Appl. Ceram. Tech., 3(4), 302 – 311 (2006).CrossRefGoogle Scholar
  2. 2.
    J. W. Fergus, “Perovskite oxides for semiconductor-based gas sensors,” Sensors and Actuators B: Chem., 121(2), 652 – 663 (2007).CrossRefGoogle Scholar
  3. 3.
    R. K. Slotwinski, N. Bonanos, and E. P. Butler, “Electrical properties of MgO+Y2O3 and CaO+Y2O3 partially stabilized zirconia,” J. Mater. Sci. Lett., 4(5), 641 – 644 (1985).CrossRefGoogle Scholar
  4. 4.
    O. V. Karban, O. L. Khasanov, and O. M. Kanunnikova, “Microstructure of ZrO2 nanoceramics,” J. Struct. Chem., 45, S149 – S155 (2004).CrossRefGoogle Scholar
  5. 5.
    T. Avalos-Rendon, J. Ortiz-Landeros, G. Fetter, et al., “Structure, thermal stability, and catalytic performance of MgO–ZrO2 composites,” J. Struct. Chem., 52, 340 – 349 (2011).CrossRefGoogle Scholar
  6. 6.
    S. Boulfrad, E. Djurado, and J. Fouletier, “Electrochemical characterization of nanostructured zirconias,” Solid State Ionic, 180, 978 – 983 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Shimazu, K. Yamaji, H. Kishimoto, et al., “Stability of Sc2O3 and CeO2 co-doped ZrO2 electrolyte during the operation of solid oxide fuel cells: Pt III. Detailed mechanism of the decomposition,” Solid State Ionic, 224, 6 – 14 (2012).CrossRefGoogle Scholar
  8. 8.
    V. A. Antonov, P. A. Arsenev, Kh. S. Bagdasarov, and A. D. Ryazantsev, High-Temperature Oxide Materials Based on Zirconium Dioxide [in Russian], Izd. MEI, Moscow (1982).Google Scholar
  9. 9.
    A. V. Obukhova, L. I. Kuznetsova, P. N. Kuznetsov, et al., “Study of the effect of promoters on thermochemical transformations of zirconium hydroxide,” Steklo Keram., No. 11, 18 – 23 (2017); A. V. Obukhova, L. I. Kuznetsova, P. N. Kuznetsov, et al., “Study of the effect of promoters on thermochemical transformations of zirconium hydroxide,” Glass Ceram., 76(11 – 12), 399 – 403 (2018).Google Scholar
  10. 10.
    W. B. Blumenthal, Zirconium Chemistry [Russian translation], Izd. Inostr. Lit., Moscow (1963).Google Scholar
  11. 11.
    P. N. Kuznetsov, L. I. Kuznetsov, and A. M. Zhizhaev, “Investigation of solid-phase mechanochemical and thermal reactions forming nanostructured zirconium oxide,” in: Fundamentals of the Mechanochemical Activation, Mechanosynthesis, and Mechanochemical Technologies [in Russian], Izd. SO RAN, Novosibirsk (2009), pp. 68 – 86 (integration projects of SO RAN, No. 19).Google Scholar
  12. 12.
    P. N. Kuznetsov, A. V. Kazbanova, L. I. Kuznetsova, et al., “Bulk and surface characterization and isomerization activity of \( \mathrm{Pt}/{\mathrm{WO}}_4^{2-}/{\mathrm{ZrO}}_2 \) catalysts of different preparations,” React. Kinet. Mechan. Catal., 113, 69 – 84 (2014).CrossRefGoogle Scholar
  13. 13.
    F. Davar, A. Hassankhani, and M. R. Loghman-Estarki, “Controllable synthesis of metastable tetragonal zirconia nanocrystals using citric acid assisted sol-gel method,” Ceram. Int., 39, 2933 – 2941 (2013).CrossRefGoogle Scholar
  14. 14.
    N. N. Novik, V. G. Konakov, and I. Y. Archakov, “Zirconia and ceria based ceramics and nanoceramics—A review on electrochemical and mechanical properties,” Rev. Adv. Mater. Sci., 40, 188 – 207 (2015).Google Scholar
  15. 15.
    S. M. Shugurov, O. Yu. Kurapova, S. I. Lopatin, et al., “Thermodynamic properties of the La2O3–ZrO2 system by Knudsen effusion mass spectrometry at high temperature,” Rapid Commun. Mass Spectrom., 31, 2021 – 2029 (2017).CrossRefGoogle Scholar
  16. 16.
    V. I. Barbashov and E. V. Nesova, “Ionic conductivity of the system ZrO2–Sc2O3–La2O3 ,” Ogneup. Tekh. Keram., Nos. 1 – 2, 3 – 7 (2011).Google Scholar
  17. 17.
    C. Wang, O. Fabrichnaya, M. Zinkevich, et al., “Experimental study and thermodynamic modelling of the ZrO2–LaO1.5 system,” Comp. Coupl. Phase Diagrams and Thermochem., 32, 111 – 120 (2008).CrossRefGoogle Scholar
  18. 18.
    D. G. Barton, S. L. Soled, G. D. Meitzner, et al., “Structural and ñatalytic ñharacterization of solid acids based on zirconia modified by tungsten oxide original,” J. Ñatal., 181, 57 – 72 (1999).Google Scholar
  19. 19.
    A. Kaddouri, C. Mazzocchia, E. Tempesti, and R. Anouchinsky, “On the activity of ZrO2 prepared by different methods,” J. Thermal Anal., 53, 97 – 109 (1998).CrossRefGoogle Scholar
  20. 20.
    M. K. Naskar and D. Gangulo, “Range of metastability of tetragonal zirconia in some rare earth doped zirconia,” J. Mater. Sci. Lett., 17, 1971 – 1973 (1998).CrossRefGoogle Scholar
  21. 21.
    P. Thangadurai, A. Chandra Bose, and S. Ramasamy, “Phase stabilization and structural studies of nanocrystalline La2O3–ZrO2,” J. Mater. Sci., 40, 3963 – 3968 (2005).CrossRefGoogle Scholar
  22. 22.
    R. D. Shannon and C. N. Prewitt, “Effective ionic radii on oxides and fluorides,” Acta. Cryst. Sec. B, 25, 925 – 946 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. V. Obukhova
    • 1
    Email author
  • L. I. Kuznetsova
    • 1
  • G. N. Bondarenko
    • 1
  • O. Yu. Fetisova
    • 1
  • E. V. Mazurova
    • 1
  • P. N. Kuznetsov
    • 1
  1. 1.Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences (ICCT SB RAN) and Federal Research Center – Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences (FRC KSC SB RAN)KrasnoyarskRussia

Personalised recommendations