Skip to main content
Log in

Effect of the Ratio SiO2/Al2O3 on the Structure, Properties, and Thermal Stability of Geopolymer Refractory Materials

  • AT ENTERPRISES AND INSTITUTES
  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The properties of lightweight geopolymer materials (GM) based on refractory technogenic aluminosilicate wastes were studied. The effect of the ratio of the oxides SiO2 and Al2O3 in the compositions of GM on the physical and mechanical properties of GM was investigated. It was found that SiO2/Al2O3 reduction in the GM composition results in higher density and strength and lower water absorption of the samples after a keeping period. After firing at temperatures 800 and 1000°C the strength of the samples becomes all the higher the lower the ratio SiO2/Al2O3 in the composition. The heat resistance of the samples comprises four thermal cycles for high and more than seven cycles low ratio SiO2/Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. J. Davidovitz, Geopolymer: Chemistry and Applications, Institute Geopolymer, Saint-Quentin (2008).

  2. V. I. Korneev and A. S. Brykov, “Prospects for the development of general building binding materials: Geopolymers and their distinctive features,” Tsement i Ego Primenenie, March – April (2010), pp. 51 – 55.

  3. P. Duxson, A. Fernandez-Jimenez, J. L. Provis, et al., “Geopolymer technology: the current state of the art,” J. Mater. Sci., 42, 2917 – 2933 (2007).

  4. Ch. Panagiotopoulou, E. Kontori, Th. Perraki, and G. Kakali, “Dissolution of aluminosilicate minerals and by-products in alkaline media,” J. Mater. Sci., 42, 2967 – 2973 (2007).

    Article  Google Scholar 

  5. L. Weng, K. Sagoe-Crentsil, T. Brown, and S. Song, “Effects of aluminates on the formation of geopolymers,” Mater. Sci. Eng., 117, 163 – 168 (2005).

    Article  Google Scholar 

  6. Á. Palomo, S. Alonso, A. Fernandez-Jiménez, et al., “Alkaline activation of fly ashes: NMR study of the reaction products,” J. Am. Ceram. Soc., 87, 1141 – 1145 (2004).

  7. A. Fernández-Jiménez, A. Palomo, I. Sobrados, and J. Sanz, “The role played by the reactive alumina content in the alkaline activation of fly ashes,” Microporous Mesoporous Mater. 91(1 – 3), 111 – 119 (2006).

    Article  Google Scholar 

  8. T. Bakharev, “Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing,” Cement Concrete Res., 36(6), 1134 – 1147 (2006).

    Article  Google Scholar 

  9. R. E. Lyon, P. N. Balaguru, A. Foden, et al., “Fire-resistant aluminosilicate composites,” Fire and Mater., 4, 67 – 73 (1997).

    Article  Google Scholar 

  10. G-M Tsaousi, I. Douni, M. Taxiarchou, et al., “Development of foamed inorganic polymeric materials based on perlite,” in: IOP Conference Series: Material Science and Engineering (2016), Vol. 123.

  11. L. Korat, V. Ducman, A. Legat, and B. Mirtiè, “Characterisation of the pore-forming process in lightweight aggregate based on silica sludge by means of x-ray micro-tomography (microCT) and mercury intrusion porosimetry (MIP),” Ceram. Int., 39(6), 6997 – 7005 (2013).

    Article  Google Scholar 

  12. J. Henon, A. Alzina, J. Absi, et al., “Porosity control of cold consolidated geomaterial foam: Temperature effect,” Ceram. Int., 38(1), 77 – 84 (2012).

  13. D. M. Huiskes, A. Keulen, Q. L. Yu, and H. J. H. Brouwers, “Design and performance evaluation of ultra-lightweight geopolymer concrete,” in: 19 Internationale Baustofftagung, September 16 – 18, 2015, Weimar, Bundesrepublik Deutschland (2015), Vol. 2, pp. 1099 – 1106.

  14. K. Pimraksa, P. Chindaprasirt, A. Rungchet, et al., “Lightweight geopolymer made of highly porous siliceous materials with various Na2O/Al2O3 and SiO2/Al2O3 ratios,” Mater. Sci. Eng., 528(21), 6616 – 6623 (2011).

    Article  Google Scholar 

  15. P. Posi, C. Teerachanwit, C. Tanutong, et al., “Lightweight geopolymer concrete containing aggregate from recycle lightweight block,” Mater. & Design, 52, 580 – 586 (2013).

    Article  Google Scholar 

  16. R. M. Novais, L. H. Buruberri, M. P. Seabra, et al., “Novel porous fly ash-containing geopolymers for pH buffering applications,” J. of Cleaner Production, 124(15), 395 – 404 (2016).

    Article  Google Scholar 

  17. S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, et al., “Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends,” J. Mater. Sci., 46, 5477 – 5486 (2011).

    Article  Google Scholar 

  18. R. P. Williams and A. van Riessen, “Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD,” Fuel, 89, 3683 – 3692 (2010).

    Article  Google Scholar 

  19. W. D. A. Rickard, J. Temuujin, and A. van Riessen, “Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition,” J. Non-Cryst. Solids, 358(15), 1830 – 1839 (2012).

    Article  Google Scholar 

  20. Y. Zhao, J. Ye, X. Lu, et al., “Preparation of sintered foam materials by alkali-activated coal fly ash,” J. Hazardous Mater., 174(1 – 3), 108 – 112 (2010).

    Article  Google Scholar 

  21. D. L. Y. Kong, J. G. Sanjayan, and K. Sagoe-Crentsil, “Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures,” Cement Concrete Res., 37(12), 1583 – 1589 (2007).

    Article  Google Scholar 

  22. T. S. Lin, D. C. Jia, P. G. He, and M. R. Wang, “Thermomechanical and microstructural characterisation of geopolymers with alpha alumina particulate filler,” Int. J. Thermophys., 30, 1568 – 1577 (2009).

    Article  Google Scholar 

  23. F. J. Silva and C. Thaumaturgo, “Fibre reinforcement and fracture response in geopolymeric materials,” Fatigue & Fracture Eng. Mat. & Struct., 26(2), 167 – 172 (2003).

    Article  Google Scholar 

  24. E. Kamseu, A. Rizzuti, C. Leonelli, and D. Perera, “Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition,” J. Mater. Sci., 45, 1715 – 1724 (2010).

    Article  Google Scholar 

  25. A. Buchwald, M. Vicent, R. Kriegel, et al., “Geopolymeric binders with different fine fillers – phase transformations at high temperatures,” Appl. Clay Sci., 46(2), 190 – 195 (2009).

  26. P. Duxson, G. C. Lukey, S. J. Jannie, and J. S. J. van Deventer, “Physical evolution of Na-geopolymer derived from metakaolin up to 1000°C,” J. Mater. Sci., 42(9), 3044 – 3054 (2007).

    Article  Google Scholar 

  27. V. F. F. Barbosa and K. J. D. MacKenzie, “Synthesis and thermal behaviour of potassium sialate geopolymers,” Mater. Lett., 57(9 – 10), 1477 – 1482 (2003).

    Article  Google Scholar 

  28. J. L. Bell, P. E. Driemeyer, and W. M. Kriven, “Formation of ceramics from metakaolin-based geopolymers. Part II. K-based geopolymer,” J. Am. Ceram. Soc., 92(3), 607 – 615 (2009).

    Article  Google Scholar 

  29. L. Dembovska, G. Bumanis, L. Vitola, and D. Bajare, “Influence of fillers on the alkali activated chamotte,” in: IOP Conf. Series: Material Science and Engineering (2017).

  30. V. Antonoviè, M. Šukšta, I. Pundienè, and R. Stonys, “Procedural elements in estimation of the thermal shock resistance of different types of refractory concrete based on chamotte filler,” Refract. Industr. Ceram., 52(1), 70 – 74 (2011).

    Article  Google Scholar 

  31. F. Benboudjema, E. Guillon, and J. Torrenti, Effect of Interfacial Transition Zone and Aggregates on the Time-Dependent Behavior of Mortar and Concrete (2002); URL: http://www.framcos.org/FraMCoS-5/Benboudjema.Effect.PDF.

  32. A. Fernandez-Jimenez, J. Y. Pastor, A. Martýn, and A. Palomo, “High-temperature resistance in alkali-activated cement,” J. Am. Ceram. Soc., 93(10), 3411 – 3417 (2010).

    Article  Google Scholar 

  33. T. Pyatina and T. Sugama, “Set controlling additive for thermal-shock-resistant cement,” GRC Trans., 38, 251 – 257 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dembovska.

Additional information

Translated from Steklo i Keramika, No. 3, pp. 34 – 40, March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dembovska, L., Pundiene, I., Bajare, D. et al. Effect of the Ratio SiO2/Al2O3 on the Structure, Properties, and Thermal Stability of Geopolymer Refractory Materials. Glass Ceram 75, 112–117 (2018). https://doi.org/10.1007/s10717-018-0039-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-018-0039-0

Key words

Navigation