Advertisement

Lagrangian formalism for Rastall theory of gravity and Gödel-type universe

  • W. A. G. De Moraes
  • A. F. SantosEmail author
Research Article
  • 57 Downloads

Abstract

In the Rastall gravity a non-minimal coupling between geometry and matter fields is considered. Then the usual energy-momentum tensor conservation law is not valid. Here a Lagrangian formalism is proposed to the Rastall theory of gravity. The Gödel-type universe is studied in this gravitational model. Then it is studied whether this theory permits causality violation. The field equations do not exclude solutions with a breakdown of causality for a perfect fluid as matter content. In this case, an expression for the critical radius (beyond which the causality is violated) is determined. In addition, for a combination between perfect fluid and scalar field as matter content the theory accommodates causal Gödel-type solution.

Keywords

Lagrangian formalism Rastall theory Gödel-type universe Causality violation 

Notes

Acknowledgements

This work by A. F. S. is supported by CNPq projects 308611/2017-9 and 430194/2018-8; W. A. G. M. thanks CAPES for financial support.

References

  1. 1.
    Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rep. 513, 1 (2012)ADSMathSciNetGoogle Scholar
  2. 2.
    Rastall, P.: Phys. Rev. D 6, 3357 (1972)ADSMathSciNetGoogle Scholar
  3. 3.
    Rastall, P.: Can. J. Phys. 54, 66 (1976)ADSMathSciNetGoogle Scholar
  4. 4.
    Koivisto, T.: Class. Quantum Gravity 23, 4289 (2006)ADSGoogle Scholar
  5. 5.
    Minazzoli, O.: Phys. Rev. D 88, 027506 (2013)ADSGoogle Scholar
  6. 6.
    Batista, C.E.M., Daouda, M.H., Fabris, J.C., Piattella, O.F., Rodrigues, D.C.: Phys. Rev. D 85, 084008 (2012)ADSGoogle Scholar
  7. 7.
    Fabris, J.C., Piattella, O.F., Rodrigues, D.C., Batista, C.E.M., Daouda, M.H.: Int. J. Mod. Phys. Conf. Ser. 18, 67 (2012)Google Scholar
  8. 8.
    Heydarzade, Y., Darabi, F.: Phys. Lett. B 771, 365–373 (2017)ADSGoogle Scholar
  9. 9.
    Heydarzade, Y., Moradpour, H., Darabi, F.: Can. J. Phys. 95, 1253–1256 (2017)ADSGoogle Scholar
  10. 10.
    Kumar, R., Ghosh, S.G.: Eur. Phys. J. C 78, 750 (2018)ADSGoogle Scholar
  11. 11.
    Ma, M.S., Zhao, R.: Eur. Phys. J. C 77, 629 (2017)ADSGoogle Scholar
  12. 12.
    Moradpour, H., Salako, I.G.: Adv. High Energy Phys. 2016, 3492796 (2016)Google Scholar
  13. 13.
    Moradpour, H., Sadeghnezhad, N., Hendi, S.H.: Can. J. Phys. 95, 1257 (2017)ADSGoogle Scholar
  14. 14.
    Moradpour, H., Heydarzade, Y., Darabi, F., Salako, I.G.: Eur. Phys. J. C 77, 259 (2017)ADSGoogle Scholar
  15. 15.
    Ziaie, A.H., Moradpour, H., Ghaffari, S.: Gravitational Collapse in Rastall Gravity. arXiv: 1901.03055 [gr-qc]
  16. 16.
    Visser, M.: Phys. Lett. B 782, 83 (2018)ADSGoogle Scholar
  17. 17.
    Darabi, F., Moradpour, H., Licata, I., Heydarzade, Y., Corda, C.: Eur. Phys. J. C 78, 25 (2018)ADSGoogle Scholar
  18. 18.
    Smalley, L.L.: Nuovo Cimento 80, 42 (1984)Google Scholar
  19. 19.
    Fabris, J.C., Velten, H., Caramês, T.R.P., Lazo, M.J., Frederico, G.S.F.: Int. J. Mod. Phys. D 27, 1841006 (2018)ADSGoogle Scholar
  20. 20.
    Fabris, J.C., Piattella, O.F., Rodrigues, D.C., Daouda, M.H.: AIP Conf. Proc. 1647, 50 (2015)ADSGoogle Scholar
  21. 21.
    Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 024020 (2011)ADSGoogle Scholar
  22. 22.
    Harko, T., Lobo, F.S.N.: Eur. Phys. J. C 70, 373 (2010)ADSGoogle Scholar
  23. 23.
    Harko, T., Lobo, F.S.N.: Galaxies 2, 410 (2014)ADSGoogle Scholar
  24. 24.
    Gödel, K.: Rev. Mod. Phys. 21, 447 (1949)ADSGoogle Scholar
  25. 25.
    Van Stockum, W.J.: Proc. R. Soc. Edinb. 57, 135 (1938)Google Scholar
  26. 26.
    Tipler, F.J.: Phys. Rev. D 9, 2203 (1974)ADSMathSciNetGoogle Scholar
  27. 27.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1975)zbMATHGoogle Scholar
  28. 28.
    Kerr, R.P.: Phys. Rev. Lett. 11, 237 (1963)ADSMathSciNetGoogle Scholar
  29. 29.
    Deser, S., Jackiw, R., Hooft, G. ’t: Phys. Rev. Lett. 68, 267 (1992)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Gott, J.R.: Phys. Rev. Lett. 66, 1126 (1991)ADSMathSciNetGoogle Scholar
  31. 31.
    Grant, J.D.E.: Phys. Rev. D 47, 2388 (1993)ADSMathSciNetGoogle Scholar
  32. 32.
    Rebouças, M.J., Tiomno, J.: Phys. Rev. D 28, 1251 (1983)ADSMathSciNetGoogle Scholar
  33. 33.
    Rebouças, M.J., Santos, J.: Phys. Rev. D 80, 063009 (2009)ADSGoogle Scholar
  34. 34.
    Santos, J., Rebouças, M., Oliveira, T.B.R.F.: Phys. Rev. D 81, 123017 (2010)ADSMathSciNetGoogle Scholar
  35. 35.
    Santos, A.F.: Mod. Phys. Lett. A 28, 1350141 (2013)ADSGoogle Scholar
  36. 36.
    Santos, A.F., Ferst, C.J.: Mod. Phys. Lett. A 30, 1550214 (2015)ADSGoogle Scholar
  37. 37.
    Agudelo, J.A., Porfirio, P.J., Fonseca-Neto, J.B., Nascimento, J.R., Yu, A., Petrov, Santos, A.F.: Phys. Lett. B 762, 96 (2016)ADSGoogle Scholar
  38. 38.
    Porfirio, P.J., Fonseca-Neto, J.B., Nascimento, J.R., Petrov, AYu., Ricardo, J., Santos, A.F.: Phys. Rev. D 94, 044044 (2016)ADSMathSciNetGoogle Scholar
  39. 39.
    Fonseca-Neto, J.B., Yu, A., Petrov, Rebouças, M.: Phys. Lett. B 725, 412 (2013)ADSMathSciNetGoogle Scholar
  40. 40.
    Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Butterworth-Heinemann, Oxford (1998)zbMATHGoogle Scholar
  41. 41.
    Santos, R.V., Nogales, J.A.C.: Cosmology from a Lagrangian formulation for Rastall’s theory. arXiv:1701.08203 [gr-qc]
  42. 42.
    Sotiriou, T.P.: Class. Quantum Gravity 23, 5117 (2006)ADSMathSciNetGoogle Scholar
  43. 43.
    Santos, J., Rebouças, M.J., Oliveira, T.B.R.F.: Phys. Rev. D 81, 123017 (2010)ADSMathSciNetGoogle Scholar
  44. 44.
    Santos, A.F., Ulhoa, S.C.: Mod. Phys. Lett. A 30, 1550039 (2015)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade Federal de Mato GrossoCuiabáBrazil

Personalised recommendations