Advertisement

Phase space of static wormholes sustained by an isotropic perfect fluid

Abstract

A phase space is built that allows to study, classify and compare easily large classes of static spherically symmetric wormholes solutions, sustained by an isotropic perfect fluid in General Relativity. We determine the possible locations of equilibrium points, throats and curvature singularities in this phase space. Throats locations show that the spatial variation of the gravitational redshift at the throat of a static spherically symmetric wormhole sustained by an isotropic perfect fluid is always diverging, generalising the result that there is no such wormhole with zero-tidal force. Several specific static spherically symmetric wormholes models are studied. A vanishing density model leads to an exact solution of the field equation allowing to test our dynamical system formalism. It also shows how to extend it to the description of static black holes. Hence, the trajectory of the Schwarzschild black hole is determined. The static spherically symmetric wormhole solutions of several usual isotropic dark energy (generalised Chaplygin gas, constant, linear and Chevallier–Polarski–Linder equations of state) and dark matter (Navarro–Frenk–White profile) models are considered. They show various behaviours far from the throat: singularities, spatial flatness, cyclic behaviours, etc. None of them is asymptotically Minkowski flat. This discards the natural formation of static spherically symmetric and isotropic wormholes from these dark fluids. Last we consider a toy model of an asymptotically Minkowski flat wormhole that is a counterexample to a recent theorem claiming that a static wormhole sustained by an isotropic fluid cannot be asymptotically flat on both sides of its throat.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    We do not consider the Bronnikov–Ellis model [44, 45] which is not based on an isotropic perfect fluid.

References

  1. 1.

    Kuhfittig, P.K.F.: New Horiz. Math. Phys. 1, 14–18 (2017)

  2. 2.

    Sushkov, S.V.: Phys. Rev. D 71, 043520 (2005)

  3. 3.

    Lobo, F.S.N.: AIP Conf. Proc. 861, 936–943 (2006)

  4. 4.

    Kuhfittig, P.K.F.: Acta Phys. Polinica B 47, num 5 (2016)

  5. 5.

    Wainwright, J., Ellis, G.F.R. (eds.): Cambridge University Press (1997). https://doi.org/10.1017/CBO9780511524660

  6. 6.

    Mignemi, S., Wiltshire, D.L.: CQG 6, 7 (1989)

  7. 7.

    Mignemi, S., Wiltshire, D.L.: Phys. Rev. D 46, 1475–1506 (1992)

  8. 8.

    Poletti, S.J., Wiltshire, D.L.: Phys. Rev. D 50, 7260–7270 (1994)

  9. 9.

    Ganguly, A., et al.: CQG 32, 10 (2015)

  10. 10.

    Cruz, M., et al.: CQG 34, 125014 (2017)

  11. 11.

    Sussman, R.A.: CQG 25, 015012 (2008)

  12. 12.

    Montelongo, N., Zannias, T.: CQG 26(10), 105011 (2009)

  13. 13.

    Morris, M., Thorne, K.: Am. J. Phys. 56, 395–416 (1988)

  14. 14.

    Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002)

  15. 15.

    Rahaman, F., Kalam, M., Chakraborty, S.: Acta Phys. Polon. B 40, 25–40 (2009)

  16. 16.

    Huterer, D., Turner, M.S.: Phys. Rev. D 64, 123527 (2001)

  17. 17.

    Weller, J., Albrecht, A.: Phys. Rev. D 65, 103512 (2002)

  18. 18.

    Chevallier, M., Polarski, D.: Int. J. Mod. Phys. D 10, 213 (2001)

  19. 19.

    Linder, E.V.: Phys. Rev. Lett. 90, 091301 (2003)

  20. 20.

    Navarro, J.F., Frenk, C.S., White, S.D.M.: Astrophys. J. 462, 563–575 (1996)

  21. 21.

    Lobo, F.S.N.: Phys. Rev. D 71, 084011 (2005)

  22. 22.

    Chakraborty, S., Bandyopadhyay, T.: Int. J. Mod. Phys. D 18, 463–476 (2007)

  23. 23.

    Cataldo, M., Liempi, L., Rodriguez, P.: Phys. Rev. D 91, 124039 (2015)

  24. 24.

    Bronnikov, K.A., Kim, S.-W.: Phys. Rev. D 67, 064027 (2003)

  25. 25.

    Kuhfittig, P.K.F.: Class. Quant. Gravity 23, 5853–5860 (2006)

  26. 26.

    Lobo, F.S.N., Parsaei, F., Riazi, N.: Phys. Rev. D 87, 084030 (2013)

  27. 27.

    Gorini, V., et al.: Phys. Rev. D 78, 064064 (2008)

  28. 28.

    Rahaman, F., et al.: Phys. Lett. B633, 161–163 (2006)

  29. 29.

    Kremer, G.M.: Phys. Rev. D 68, 123507 (2003)

  30. 30.

    Ananda, K.N., Bruni, M.: Phys. Rev. D74, 023524 (2006)

  31. 31.

    Cataldo, M., et al.: Phys. Lett. B 757, 130–135 (2016). arXiv:1604.04578

  32. 32.

    Uggla, C.: Spacetime singularities. In: Einstein Online Vol. 02, 1002 (2006)

  33. 33.

    Cataldo, M., Liempi, L., Rodríguez, P.: Eur. Phys. J. C 77, 748 (2017)

  34. 34.

    Bronnikov, K.A., Baleevskikh, K.A., Skvortsova, M.V.: Phys. Rev. D 95, 124039 (2017)

  35. 35.

    B. Dean, A. J. P, 67, 78 (1999)

  36. 36.

    Lobo, F.S.N.: Phys. Rev. D 73, 064028 (2006)

  37. 37.

    Stark, A., Miller, C.J., Huterer, D.: Phys. Rev. D 96, 023543 (2017)

  38. 38.

    Rudra, P., Ranjit, C., Kundu, S.: Mod. Phys. Lett. A 30(31), 1550151 (2015)

  39. 39.

    Jassal, H.K., Bagla, J.S., Padmanabhan, T.: MNRAS 405, 4 (2010)

  40. 40.

    Tsutsui, R., et al.: MNRAS 394, 1 (2009)

  41. 41.

    Rahaman, F., et al.: Eur. Phys. J. C 74, 2750 (2014)

  42. 42.

    Islam, S., Rahaman, F., Övgün, A. et al.: https://doi.org/10.1139/cjp-2017-0864 arxiv:1806.01135 (2018)

  43. 43.

    Rahaman, F., Shit, G.C., Sen, B., et al.: Astrophys. Space Sci. 361, 37 (2016)

  44. 44.

    Bronnikov, K.A.: Acta Phys. Pol. B 4, 251–266 (1973)

  45. 45.

    Ellis, H.G.: J. Math. Phys. 14, 104–118 (1973)

  46. 46.

    Lemos, J.P.S., Lobo, F.S.N., de Oliveira, S.Q.: Phys. Rev. D 68, 064004 (2003)

  47. 47.

    Hossenfelder, S.: arXiv:1801.02176 (2018)

  48. 48.

    Nilsson, U.S., Uggla, C.: Ann. Phys. 286, 278–291 (2001)

  49. 49.

    Nilsson, U.S., Uggla, C.: Ann. Phys. 286, 292–319 (2001)

  50. 50.

    Heinzle, J.M., Rohr, N., Uggla, C.: Class. Quant. Gravity 20, 4567–4586 (2003)

Download references

Author information

Correspondence to Stéphane Fay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fay, S. Phase space of static wormholes sustained by an isotropic perfect fluid. Gen Relativ Gravit 51, 165 (2019) doi:10.1007/s10714-019-2648-5

Download citation

Keywords

  • Wormhole
  • Dynamical system
  • Dark energy