Gravitational lensing beyond geometric optics: II. Metric independence

  • Abraham I. HarteEmail author
Editor’s Choice (Research Article)


Typical applications of gravitational lensing use the properties of electromagnetic or gravitational waves to infer the geometry through which those waves propagate. Nevertheless, the optical fields themselves—as opposed to their interactions with material bodies—encode very little of that geometry: it is shown here that any given configuration is compatible with a very large variety of spacetime metrics. For scalar fields in geometric optics, or observables which are not sensitive to the detailed polarization content of electromagnetic or gravitational waves, seven of the ten metric components are essentially irrelevant. With polarization, five components are irrelevant. In the former case, this result together with diffeomorphism invariance allows essentially any geometric-optics configuration associated with a particular spacetime to be embedded into any other spacetime, at least in finite regions. Going beyond the geometric-optics approximation breaks some of this degeneracy, although much remains even then. Overall, high-frequency wave propagation is shown to be insensitive to compositions of certain conformal, Kerr–Schild, and related transformations of the background metric. One application is that new solutions for scalar, electromagnetic, and gravitational waves may be generated from old ones. In one example described here, the high-frequency scattering of a plane wave by a point mass is computed by transforming a plane wave in flat spacetime.


Gravitational lensing Wave propagation Exact solutions Gravitational waves 



I thank Brien Nolan and Marius Oancea for helpful discussions.


  1. 1.
    Schneider, P., Ehlers, J., Falco, E.E.: Gravitational Lenses. Springer, Berlin (1992)CrossRefGoogle Scholar
  2. 2.
    Bartelmann, M.: Class. Quantum Grav. 27, 233001 (2010)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Massey, R., Kitching, T., Richard, J.: Rep. Prog. Phys. 73, 086901 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Moura Neto, F.D., da Silva Neto, A.J.: An Introduction to Inverse Problems with Applications. Springer, Berlin (2012)zbMATHGoogle Scholar
  5. 5.
    Bateman, H.: Proc. Lond. Math. Soc. 8, S2–223 (1910)Google Scholar
  6. 6.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)CrossRefGoogle Scholar
  7. 7.
    Kastrup, H.: Ann. Phys. (Leipzig) 17, 631 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Harte, A.I.: Phys. Rev. Lett. 118, 141101 (2017)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Harte, A.I.: Gen. Relativ. Gravit. 51, 14 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    Born, M., Wolf, E.: Principles of Optics. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  11. 11.
    Keller, J.B., Lewis, R.M.: Asymptotic methods for partial differential equations: the reduced wave equation and Maxwell’s equations. In: Keller, J.B., McLaughlin, D.W., Papanicolaou, G.C. (eds.) Surveys in Applied Mathematics, p. 1. Springer, Berlin (1995)CrossRefGoogle Scholar
  12. 12.
    Ehlers, J.: Z. Naturforsch. A 22, 1328 (1967)ADSCrossRefGoogle Scholar
  13. 13.
    Anile, A.M.: J. Math. Phys. 17, 576 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    Isaacson, R.A.: Phys. Rev. 166, 1263 (1968)ADSCrossRefGoogle Scholar
  15. 15.
    Dolan, S.R.: Int. J. Mod. Phys. D 27, 1843010 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Thorne, K.S., Blandford, R.D.: Modern Classical Physics: Optics, Fluids, Plasmas, Elasticity, Relativity, and Statistical Physics. Princeton University Press, Princeton (2017)zbMATHGoogle Scholar
  17. 17.
    Gürses, M., Gürsey, F.: J. Math. Phys. 16, 2385 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    Xanthopoulos, B.C.: J. Math. Phys. 19, 1607 (1978)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C.L.U., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  20. 20.
    Penrose, R.: Any Space-Time Has a Plane Wave as a Limit Differential Geometry and Relativity, p. 271. Springer, Berlin (1976)Google Scholar
  21. 21.
    Blau, M., Frank, D., Weiss, S.: Class. Quantum Grav. 23, 3993 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Llosa, J., Carot, J.: Class. Quantum Grav. 26, 055013 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Harte, A.I.: Phys. Rev. Lett. 113, 261103 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    Robinson, I., Trautman, A.: Optical geometry. In: Proceedings of the XI Warsaw Symposium on Elementary Particle Physics, p. 454. World Scientific, Singapore (1989)Google Scholar
  25. 25.
    Mars, M.: Class. Quantum Grav. 18, 719 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Poisson, E., Pound, A., Vega, I.: Living Rev. Relativ. 14, 7 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Ellis, G., Nel, S., Maartens, R., Stoeger, W., Whitman, A.: Phys. Rep. 124, 315 (1985)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Gasperini, M., Marozzi, G., Nugier, F., Veneziano, G.: J. Cosm. Astropart. Phys. 07, 008 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Fleury, P., Nugier, F., Fanizza, G.: J. Cosm. Astropart. Phys. 06, 008 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    Oancea, M.A., Paganini, C.F., Joudioux, J., Andersson, L.: arXiv:1904.09963
  31. 31.
    Coll, B., Hildebrandt, S.R., Senovilla, J.M.M.: Gen. Relativ. Gravit. 33, 649 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    García-Parrado, A., Senovilla, J.M.M.: Class. Quantum Grav. 21, 2153 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    Ibison, M.: J. Math. Phys. 48, 122501 (2007)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Iihoshi, M., Ketov, S.V., Morishita, A.: Prog. Theor. Phys. 118, 475 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    Mitskievich, N.V., Horský, J.: Class. Quantum Grav. 13, 2603 (1996)ADSCrossRefGoogle Scholar
  36. 36.
    Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General Relativity. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  37. 37.
    Harte, A.I., Vines, J.: Phys. Rev. D 94, 084009 (2016)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Barceló, C., Liberati, S., Visser, M.: Living Rev. Relativ. 14, 3 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    Ett, B., Kastor, D.: Class. Quantum Grav. 27, 185024 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Astrophysics and Relativity, School of Mathematical SciencesDublin City UniversityGlasnevin, Dublin 9Ireland

Personalised recommendations