Advertisement

Thermodynamics of FRW universe with Chaplygin gas models

  • Samarjit Chakraborty
  • Sarbari GuhaEmail author
Research Article
  • 36 Downloads

Abstract

In this paper we have examined the validity of the generalized second law of thermodynamics (GSLT) in an expanding Friedmann Robertson Walker (FRW) universe filled with different variants of Chaplygin gases. Assuming that the universe is a closed system bounded by the cosmological horizon, we first present the general prescription for the rate of change of total entropy on the boundary. In the subsequent part we have analyzed the validity of the generalised second law of thermodynamics on the cosmological apparent horizon and the cosmological event horizon for different Chaplygin gas models of the universe. The analysis is supported with the help of suitable graphs to clarify the status of the GSLT on the cosmological horizons. In the case of the cosmological apparent horizon we have found that some of these models always obey the GSLT, whereas the validity of GSLT on the cosmological event horizon of all these models depend on the choice of free parameters in the respective models.

Keywords

Cosmology Chaplygin gas Universal thermodynamics 

Notes

Acknowledgements

The authors are thankful to the reviewers for their valuable comments and suggestions. SC is grateful to CSIR, Government of India for providing junior research fellowship. SG gratefully acknowledges IUCAA, India for an associateship and CSIR, Government of India for approving the major research project No. 03(1446)/18/EMR-II.

References

  1. 1.
    Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Bardeen, J.M., Carter, B., Hawking, S.W.: Commun. Math. Phys. 31, 161 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    Jacobson, T.: Phys. Rev. Lett. 75, 1260 (1995)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Hayward, S.A.: Class. Quantum Gravity 15, 3147 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Padmanabhan, T.: Class. Quantum Gravity 19, 5387 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Cai, R. G., Kim, S.P.: J. High Energy Phys. JHEP02(2005)050. arXiv:hep-th/0501055v1 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Paranjape, A., Sarkar, S., Padmanabhan, T.: Phys. Rev. D 74, 104015 (2006)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Akbar, M., Cai, Rong-Gen: Phys. Lett. B 635, 7 (2006)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Akbar, M., Cai, Rong-Gen: Phys. Rev. D 75, 084003 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Cai, R.G., Cao, L.M.: Phys. Rev. D 75, 064008 (2007)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Wang, B., Gong, Y., Abdalla, E.: Phys. Rev. D 74, 083520 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    Sadjadi, H.M.: Phys. Rev. D 73, 063525 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Mazumder, N., Chakraborty, S.: Class. Quantum Gravity 26, 195016 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Mazumder, N., Chakraborty, S.: Gen. Relativ. Gravit. 42, 813 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Jamil, M., Saridakis, E.N., Setare, M.R.: Phys. Rev. D 81, 023007 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Tian, D.W., Booth, I.: Phys. Rev. D 92, 024001 (2015). arXiv:1411.6547v3 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Yang, R.J., Qi, J.Z., Feng, L.: Int. J. Theor. Phys. 51, 1692 (2012)CrossRefGoogle Scholar
  19. 19.
    Xing, L., Chen, J., et al.: Mod. Phys. Lett. A 26(12), 885–892 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Rani, S., et al.: Astrophys. Space Sci. 361, 286 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Sharif, M., Zubair, M.: JCAP 03, 028 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Cardone, Vincenzo F., et al.: Entropy 19, 392 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    Iqbal, A., Jawad, A.: Adv. High Energy Phys. 6139430 (2018)Google Scholar
  24. 24.
    Moradpour, H., et al.: Adv. High Energy Phys. 718583 (2014)Google Scholar
  25. 25.
    Moradpour, H., Dehghani, R.: Adv. High Energy Phys. 7248520 (2016)Google Scholar
  26. 26.
    Lymperis, A., Saridakis, E.N.: Eur. Phys. J. C 78, 993 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    Mitra, S., Saha, S., Chakraborty, S.: Adv. High Energy Phys. 430764 (2015)Google Scholar
  28. 28.
    Jawad, A., et al.: Commun. Theor. Phys. 63, 453 (2015)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Izquierdo, G., Pavón, D.: Phys. Lett. B 633, 420 (2006)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Salti, M.: Int. J. Theor. Phys. 52, 4583 (2013)CrossRefGoogle Scholar
  31. 31.
    Sharif, M., Saleem, R.: Int. J. Theor. Phys. 53, 3794 (2014)CrossRefGoogle Scholar
  32. 32.
    Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Astrophys. Space Sci. 342, 155 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Karami, K., et al.: Astrophys. Space Sci. 331, 309 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Bandyopadhyay, T.: Astrophys. Space Sci. 341, 689 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Faraoni, V.: Cosmological and Black Hole Apparent Horizons. Springer International Publishing, Cham (2015)zbMATHCrossRefGoogle Scholar
  36. 36.
    Chakraborty, S., Guha, S., Panigrahi, D.: arXiv:1906.12185v1 [gr-qc] (2019)
  37. 37.
    Kamenshchik, A., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    Benaoum, H.B.: arXiv:hep-th/0205140
  40. 40.
    Debnath, U.: Astrophys. Space Sci. 312, 295 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    Chakraborty, W., Debnath, U.: Grav. Cosmol. 16, 223 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Gonzalez-Diaz, P.F.: Phys. Rev. D 68, 021303 (R) (2003)Google Scholar
  43. 43.
    Pourhassan, B.: Int. J. Mod. Phys. D 22, 1350061 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Sharif, M., Ashraf, S.: Adv. High Energy Phys. 2018, 8949252 (2018). arXiv:1810.01286v1 [gr-qc]Google Scholar
  45. 45.
    Binétruy, P., Helou, A.: Class. Quantum Gravity 32, 205006 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    Panigrahi, D., Chatterjee, S.: J. Cosmol. Astropart. Phys. JCAP05(2016)052. arXiv:1505.00373v3 [gr-qc]CrossRefGoogle Scholar
  47. 47.
    Chen, J-bin, Liu, Z-qi, Xing, L.: Int. J. Mod. Phys. D 24, 1550059 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    Sharif, M., Sarwar, A.: Mod. Phys. Lett. A 31, 1650061 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    Joshi, P.S., Narayan, R.: arXiv:1402.3055 [hep-th]
  50. 50.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsSt. Xavier’s College (Autonomous)KolkataIndia

Personalised recommendations