Gravitational shockwave on the Kerr-AdS horizon

  • Yoni BenTovEmail author
Research Article


I generalize the Dray-’t Hooft gravitational shockwave to the Kerr-AdS background.


Exact solution Rotating black hole Differential geometry General relativity Kerr-AdS metric Dray-’t Hooft Gravitational shockwave Newman–Penrose formalism Geroch–Held–Penrose formalism 



I thank Joe Swearngin and Nick Hunter-Jones for preliminary work on this project and for feedback on the final product. I am grateful to Douglas Stanford for taking the time to read a draft and float potential applications of my formalism. I also thank Dante, Maria, and Sydney at the PI Bistro for moral support. This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development Canada and by the Province of Ontario through the Ministry of Economic Development, Job Creation and Trade.


  1. 1.
    Shenker, S.H., Stanford, D.: Black holes and the butterfly effect. J. High Energy Phys. 3, 2014 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Kitaev, A., Suh, S.J.: The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual. J. High Energy Phys. 2018(5), 183 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Polchinski, J.: Memories of a theoretical physicist (2017). arXiv:1708.09093
  4. 4.
    BenTov, Y., Swearngin, J.: Gravitational shockwaves on rotating black holes. Gen. Relativ. Gravit. 51(2), 25 (2019)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Dray, T., Hooft, G.: The gravitational shock wave of a massless particle. Nucl. Phys. B 253, 173–188 (1985)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Gibbons, G.W., Perry, M.J., Pope, C.N.: The first law of thermodynamics for Kerr-anti-de Sitter black holes. Class. Quantum Gravity 22(9), 1503–1526 (2005)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Hawking, S.W., Hunter, C.J., Taylor-Robinson, M.M.: Rotation and the AdS-CFT correspondence. Phys. Rev. D 59(6), 064005 (1999)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Geroch, R., Held, A., Penrose, R.: A space-time calculus based on pairs of null directions. J. Math. Phys. 14(7), 874 (1973)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Chandrasekhar, S.: The Mathematical Theory of Black Holes. Clarendon Press, Oxford (2009)zbMATHGoogle Scholar
  10. 10.
    Fels, M., Held, A.: Kerr-Schild rides again. Gen. Relativ. Gravit. 21(1), 61–68 (1989)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Taub, A.H.: Generalised Kerr-Schild space-times. Ann. Phys. 134(2), 326–372 (1981)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Sfetsos, K.: On gravitational shock waves in curved spacetimes. Nucl. Phys. B 436(3), 721–745 (1995)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Maldacena, J., Stanford, D.: Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D 94(10), 106002 (2016)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Perimeter Institute for Theoretical PhysicsWaterlooCanada

Personalised recommendations