Advertisement

Global dynamics of the Hořava–Lifshitz cosmological system

  • Fabao Gao
  • Jaume LlibreEmail author
Research Article
  • 57 Downloads

Abstract

Using the qualitative theory of the differential equations we describe the global dynamics of the cosmological model based on Hořava–Lifshitz gravity in a Friedmann–Lemaître–Robertson–Walker space time with zero curvature and without the cosmological constant term.

Keywords

Hořava–Lifshitz Global dynamics Cosmology Poincaré compactification 

Notes

Acknowledgements

The first author gratefully acknowledges the support of the National Natural Science Foundation of China (NSFC) through Grant Nos. 11672259 and 11571301, the China Scholarship Council through Grant No. 201908320086, the Ministry of Land and Resources Research of China in the Public Interest through Grant No. 201411007. The second author gratefully acknowledges the support of the Ministerio de Econom\(\acute{\i }\)a, Industria y Competitividad, Agencia Estatal de Investigación Grants MTM2016-77278-P (FEDER) and MDM-2014-0445, the Ag\(\grave{e}\)ncia de Gestió d’Ajuts Universitaris i de Recerca Grant 2017SGR1617, and the H2020 European Research Council Grant MSCA-RISE-2017-777911.

References

  1. 1.
    Hořava, P.: Quantum gravity at a Lifshitz point. Phys. Rev. D 79, 084008 (2009)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Carloni, S., Elizalde, E., Silva, P.J.: An analysis of the phase space of Hořava–Lifshitz cosmologies. In: Odintsov, S.D., Sáez-Gómez, D., Xambó-Descamps, S. (eds.) Cosmology, Quantum Vacuum and Zeta Functions, Springer Proceedings in Physics, vol. 137, pp. 139–148. Springer, Berlin (2011)CrossRefGoogle Scholar
  3. 3.
    Li, M., Pang, Y.: A trouble with Hořava–Lifshitz gravity. J. High Energy Phys. 08, 015 (2009)ADSGoogle Scholar
  4. 4.
    Luongo, O., Muccino, M., Quevedo, H.: Kinematic and statistical inconsistencies of Hořava–Lifshitz cosmology. Phys. Dark Universe 25, 100313 (2019)ADSCrossRefGoogle Scholar
  5. 5.
    Nilsson, N.A., Czuchry, E.: Hořava–Lifshitz cosmology in light of new data. Phys. Dark Universe 23, 100253 (2019)ADSCrossRefGoogle Scholar
  6. 6.
    Mukohyama, S.: Hořava–Lifshitz cosmology: a review. Class. Quantum Gravity 27, 223101 (2010)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Sotiriou, T.P.: Hořava–Lifshitz gravity: a status report. J. Phys. Conf. Ser. 283, 012034 (2011)CrossRefGoogle Scholar
  8. 8.
    Leon, G., Saridakis, E.N.: Phase-space analysis of Hořava–Lifshitz cosmology. J. Cosmol. Astropart. Phys. 11, 006 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Leon, G., Paliathanasis, A.: Extended phase-space analysis of the Hořava–Lifshitz cosmology. Eur. Phys. J. C 79, 746 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    Saridakis, E.N.: Aspects of Hořava–Lifshitz cosmology. Int. J. Mod. Phys. D 20(08), 1485–1504 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Chen, B.: On Hořava–Lifshitz cosmology. Chin. Phys. C 35(5), 429–435 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Lepe, S., Saavedra, J.: On Hořava–Lifshitz cosmology. Astrophys. Space Sci. 350, 839–843 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    Abreu, E.M.C., Mendes, A.C.R., Oliveira-Neto, G., Ananias Neto, J., Rezende Rodrigues, L.G., Silva de Oliveira, M.: Hořava–Lifshitz cosmological models with noncommutative phase space variables. Gen. Relativ. Gravit. 51, 95 (2019)ADSCrossRefGoogle Scholar
  14. 14.
    Paliathanasis, A., Leon, G.: Cosmological solutions in Hořava–Lifshitz gravity. arXiv preprint arXiv:1903.10821 (2019)
  15. 15.
    Setare, M.R., Momeni, D.: Plane symmetric solutions in Hořava–Lifshitz theory. Int. J. Mod. Phys. D 19(13), 2079–2094 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Leon, G., Fadragas, C.R.: Cosmological dynamical systems: and their applications. Lambert Academic Publishing, GmbH & Co. KG, Saarbrücken (2012) Google Scholar
  17. 17.
    Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)zbMATHGoogle Scholar
  18. 18.
    Álvarez, M.J., Ferragut, A., Jarque, X.: A survey on the blow up technique. Int. J. Bifurc. Chaos 21(11), 3103–3118 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical ScienceYangzhou UniversityYangzhouChina
  2. 2.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations