Advertisement

Matter accretion onto a brane-world black hole via Hamiltonian approach

  • G. Abbas
  • A. Ditta
  • Abdul JawadEmail author
  • M. Umair Shahzad
Research Article
  • 92 Downloads

Abstract

The falling of matter onto a black hole (BH) is the most fascinating astrophysical wonder. Our present work is to addressed the matter accretion onto dark matter inspired brane-world BH. By adopting the Hamiltonian approach, we examine the accretion process onto brane-world BH in view of cosmological parameter and dark matter parameter \(\alpha \) and \(\beta \) respectively. We formulated general solutions of accretion using the isothermal equation of state according to the models of BH, further the steady state and spherically symmetric matter flow has been considered here. Particularly, in this paper we have analyzed the accretion of distinctive test fluids when they are falling onto BH. The most intriguing part of this paper is to talk about the impacts parameters of BH \(\alpha \) and \(\beta \) on critical matter flow as well as the mass accretion rate and the detail of the results have been presented graphically. Finally, it is demonstrated that the parameters \(\alpha \) and \(\beta \) increase the accretion rate.

Keywords

Accretion Black hole Brane-world 

PACs Nos.

04.40.Dg and 95.30.Sf 04.50.Gh 

Notes

Acknowledgements

One of us G. Abbas is grateful to HEC, Islamabad, Pakistan for their financial support under NRPU project with grant number 20-4059/NRPU/R & D/HEC/14/1217. Also, many thanks to referee for his/her careful reading and constructive comments that have improved the presentation of the manuscript.

References

  1. 1.
    Jamil, M., Rashid, M.A., Qadir, A.: Eur. Phys. J. C 58, 325 (2008)ADSGoogle Scholar
  2. 2.
    Jamil, M.: Eur. Phys. J. C 62, 609 (2009)ADSGoogle Scholar
  3. 3.
    Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999)ADSMathSciNetGoogle Scholar
  4. 4.
    Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 4690 (1999)ADSMathSciNetGoogle Scholar
  5. 5.
    Bondi, H.: Mon. Not. R. Astron. Soc. 112, 195 (1952)ADSGoogle Scholar
  6. 6.
    Michel, C.F.: Astrophys. Space Sci. 15, 153 (1972)ADSGoogle Scholar
  7. 7.
    Begelman, C.M.: Astron. Astrophys. 70, 583 (1978)ADSGoogle Scholar
  8. 8.
    Bettwieser, E., Glatzel, W.: Astron. Astrophys. 94, 306 (1981)ADSGoogle Scholar
  9. 9.
    Thorne, K.S., Flammang, R.A., Zytkow, A.N.: Mon. Not. R. Acad. Sci. 194(1981), 475 (1983)ADSGoogle Scholar
  10. 10.
    Shapiro, S.L., Teukolsky, S.A.: Black Holes. White Dwarfs and Neutron Stars Wiley, New York (1983)Google Scholar
  11. 11.
    Pandey, S.U.: Sci. Astrophys. Space 136, 195 (1987)ADSGoogle Scholar
  12. 12.
    Shapiro, L.S., Teukolsky, A.S.: Phys. Rev. Lett. 60, 1781 (1988)ADSMathSciNetGoogle Scholar
  13. 13.
    Malec, E.: Phys. Rev. 60, 104043 (1999)Google Scholar
  14. 14.
    KarkowskI, J., Kinasiewicz, B., Mach, P., Malec, E., Swierczynski, Z.: Phys. Rev. 73, 021503 (2006)ADSGoogle Scholar
  15. 15.
    Babichev, E.O., Dokuchaev, V.I., Eroshenko, Y.N.: Phys. Usp. 100, 1155 (2013)ADSGoogle Scholar
  16. 16.
    Debnath, U.: Eur. Phys. J. C 75, 129 (2015)ADSGoogle Scholar
  17. 17.
    Harko, T., Mak, K.M.: Phys. Rev. 69, 064020 (2004)MathSciNetGoogle Scholar
  18. 18.
    Mak, K.M., Harko, T.: Phys. Rev. 70, 064020 (2004)MathSciNetGoogle Scholar
  19. 19.
    Harko, T., Mak, K.M.: Phys. Rev. 319, 471 (2005)Google Scholar
  20. 20.
    Harko, T., Mak, K.M.: Phys. Rev. 636, 8 (2006)Google Scholar
  21. 21.
    Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) ADSGoogle Scholar
  22. 22.
    Rises, A., et al.: Astron. J. 116, 1009 (1998)ADSGoogle Scholar
  23. 23.
    Will, C.M.: Living Rev. Relat. 17, 4 (2014). arXiv:1403.7377 [gr-qc]ADSGoogle Scholar
  24. 24.
    Debono, I., Smoot, G.F.: Universe 2, 23 (2016). arXiv:1609.09781 [gr-qc]ADSGoogle Scholar
  25. 25.
    Famaey, B., McGaugh, S.S.: Living Rev. Relat. 15, 10 (2012). arXiv:1112.3960 [astro-ph.CO]ADSGoogle Scholar
  26. 26.
    Dadhich, N., Maartens, R., Papadopoulos, P., Rezania, V.: Phys. Lett. B 1, 487 (2000)Google Scholar
  27. 27.
    Germani, C., Maartens, R.: Phys. Rev. D 64, 124010 (2001)ADSMathSciNetGoogle Scholar
  28. 28.
    KarkowskI, J., Malec, E.: Phys. Rev. 87, 044007 (2013)Google Scholar
  29. 29.
    Mach, P., Malec, E.: Phys. Rev. 88, 084055 (2013)Google Scholar
  30. 30.
    Guzman, F.S., Lora-Clavijo, F.D.: MNRAS 225, 415 (2011)Google Scholar
  31. 31.
    Ananda, D.B., Bhattacharya, S., Das, T.K.: Gen. Relativ. Gravit. 47, 96 (2015)ADSGoogle Scholar
  32. 32.
    Sasaki, M., Shiromizu, T., Maeda, K.: Phys. Rev. D 62, 02400 (2000)Google Scholar
  33. 33.
    Sharif, M., Iftikhar, S.: Eur. Phys. J. C 76, 147 (2016)ADSGoogle Scholar
  34. 34.
    Sharif, M., Iftikhar, S.: Eur. Phys. J. C 76, 404 (2016)ADSGoogle Scholar
  35. 35.
    Sharif, M., Iftikhar, S.: Eur. Phys. J. C 76, 630 (2016)ADSGoogle Scholar
  36. 36.
    Sharif, M., Shahzadi, M.: Eur. Phys. J. C 77, 363 (2017)ADSGoogle Scholar
  37. 37.
    Sharif, M., Mumtaz, S.: Not. R.: Astron. Soc. 471, 1215 (2017)ADSGoogle Scholar
  38. 38.
    Sharif, M., Abbas, G.: Mod. Phys. Lett. A 26, 1731 (2011)ADSGoogle Scholar
  39. 39.
    Sharif, M., Abbas, G.: Chin. Phys. Lett. A 29, 010401 (2012)ADSGoogle Scholar
  40. 40.
    Ahmad, A.K., Azreg-Ainou, M., Faizal, M., Jamil, M.: Eur. Phys. J. C 76, 280 (2016)ADSGoogle Scholar
  41. 41.
    Ahmad, A.K., Azreg-Ainou, M., Bahamonde, S., Capozziello, S., Jamil, M.: Eur. Phys. J. C 76, 269 (2016)ADSGoogle Scholar
  42. 42.
    Jawad, A., Shahzad, M.U.: Eur. Phys. J. C 77, 515 (2017)ADSGoogle Scholar
  43. 43.
    Giddings, S.B., Mangano, M.L.: Phys. Rev. D 78, 035009 (2008)ADSGoogle Scholar
  44. 44.
    John, A.J., Ghosh, S.G., Maharaj, S.D.: Phys. Rev. D 88, 104005 (2013)ADSGoogle Scholar
  45. 45.
    Heyadri-Fard, M., Razmi, H., Sepangi, H.R.: Phys. Rev. D 76, 066002 (2007)ADSMathSciNetGoogle Scholar
  46. 46.
    Li, G.O., Cao, B., Feng, Z., Zu, X.: Int. J. Theor. Phys. 54, 3103 (2015)Google Scholar
  47. 47.
    Pringle, J.E., King, A.B.: Astrophysical Flows. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  48. 48.
    Ficek, F.: Class. Quantum Gravity 32, 235008 (2015)ADSMathSciNetGoogle Scholar
  49. 49.
    Ahmed, et al.: Eur. Phys. J. C 76, 280 (2016)ADSGoogle Scholar
  50. 50.
    Chakrabarti, S.K.: Int. J. Mod. Phys. D 20, 1723 (2011)ADSGoogle Scholar
  51. 51.
    Novikov, I., Thorne, K.S.: In: DeWitt, C., DeWitt, B. (eds.) Black Holes, p. 343. Gordon and Breach, New York (1973)Google Scholar
  52. 52.
    Chakrabarti, S.K.: Theory of Transonic Astrophysical Flows. World Scientific, Singapore (1990)Google Scholar
  53. 53.
    Nagle, R.K., Saff, E.B., Snider, A.D.: Fundamentals of Differential Equations and Boundary Value Problems, 6th edn. Pearson International Edition, London (2012)zbMATHGoogle Scholar
  54. 54.
    Polking, J., Boggess, A., Arnold, D.: Diffrential Equations with Boundary Value Problems, 2nd edn. Prentice Hall, Upper Saddle River (2006)Google Scholar
  55. 55.
    Bugl, P.: Differential Equations: Matrices and Models. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  56. 56.
    Azreg-Anou, M.: Class. Quantum Gravity 30, 205001 (2013)ADSGoogle Scholar
  57. 57.
    Bahamonde, S., Jamil, M.: Eur. Phys. J. C 75, 508 (2015)ADSGoogle Scholar
  58. 58.
    Maia, M.D., Maia, J.M.F., Monte, E.M., Alcaniz, J.S.: Class. Quantum Gravity 22, 1623 (2005) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsThe Islamia University of BahawalpurBahawalpurPakistan
  2. 2.Department of MathematicsCOMSATS University Islamabad, Lahore CampusLahorePakistan
  3. 3.Faculty of SciencesUniversity of Central PunjabLahorePakistan

Personalised recommendations