Chaos in Born–Infeld–AdS black hole within extended phase space

  • Yong Chen
  • Haitang Li
  • Shao-Jun ZhangEmail author
Research Article


Born–Infeld–AdS black holes in extended phase space may possess phase structures resembling that of van der Waals fluid in four-dimensional spacetime. We study dynamics of its state, which is in the unstable spinodal region initially on phase space, under time-periodic thermal perturbations. By applying the Melnikov method, it is found that there exists a critical amplitude \(\gamma _c\) of the perturbations, which depends on the Born–Infeld parameter b and the black hole charge Q, such that chaos occurs for \(\gamma > \gamma _c\). We found that larger b or Q makes the onset of chaos easier. Space-periodic thermal perturbations on its equilibrium state are also studied and there is always chaos for whatever the perturbation amplitude is.


Black hole thermodynamics Extended phase space Born–Infeld black holes Chaos 



This work is supported by National Natural Science Foundation of China (No. 11605155).


  1. 1.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975). Erratum: Commun. Math. Phys. 46, 206 (1976)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999). [Adv. Theor. Math. Phys. 2, 231 (1998)]. arXiv:hep-th/9711200 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109 ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150 ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kastor, D., Ray, S., Traschen, J.: Enthalpy and the mechanics of AdS black holes. Class. Quant. Grav. 26, 195011 (2009). arXiv:0904.2765 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Kubiznak, D., Mann, R.B.: Black hole chemistry. Can. J. Phys 93(9), 999 (2015). arXiv:1404.2126 [gr-qc]ADSCrossRefGoogle Scholar
  8. 8.
    Mann, R.B.: The chemistry of black holes. Springer Proc. Phys. 170, 197 (2016)CrossRefGoogle Scholar
  9. 9.
    Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577 (1983)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Charged AdS black holes and catastrophic holography. Phys. Rev. D 60, 064018 (1999). arXiv:hep-th/9902170 ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Chamblin, A., Emparan, R., Johnson, C.V., Myers, R.C.: Holography, thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999). [hep-th/9904197]ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Dolan, B.P.: Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Grav. 28, 235017 (2011). arXiv:1106.6260 [gr-qc]ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kubiznak, D., Mann, R.B.: P–V criticality of charged AdS black holes. JHEP 1207, 033 (2012). arXiv:1205.0559 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Gunasekaran, S., Mann, R.B., Kubiznak, D.: Extended phase space thermodynamics for charged and rotating black holes and Born–Infeld vacuum polarization. JHEP 1211, 110 (2012). arXiv:1208.6251 [hep-th]ADSCrossRefGoogle Scholar
  15. 15.
    Altamirano, N., Kubiznak, D., Mann, R.B.: Reentrant phase transitions in rotating anti-de Sitter black holes. Phys. Rev. D 88(10), 101502 (2013). arXiv:1306.5756 [hep-th]ADSCrossRefGoogle Scholar
  16. 16.
    Kubiznak, D., Mann, R.B., Teo, M.: Black hole chemistry: thermodynamics with Lambda. Class. Quant. Grav. 34(6), 063001 (2017). arXiv:1608.06147 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Slemrod, M., Marsden, J.E.: Temproal and spatial chaos in a van der Waals fluid due to periodic thermal fluctuations. Adv. Appl. Math. 6, 135 (1985)CrossRefGoogle Scholar
  18. 18.
    Melnikov, V.K.: On the stability of the center for time periodic perturbations. Trans. Mosc. Math. Soc. 12, 1–57 (1963)MathSciNetGoogle Scholar
  19. 19.
    Chabab, M., El Moumni, H., Iraoui, S., Masmar, K., Zhizeh, S.: Chaos in charged AdS black hole extended phase space. Phys. Lett. B 781, 316 (2018). arXiv:1804.03960 [hep-th]ADSCrossRefGoogle Scholar
  20. 20.
    Mahish, S., Chandrasekhar, B.: Chaos in charged Gauss–Bonnet AdS black holes in extended phase space. Phys. Rev. D 99(10), 106012 (2019). arXiv:1902.08932 [hep-th]ADSCrossRefGoogle Scholar
  21. 21.
    Banerjee, R., Roychowdhury, D.: Critical behavior of Born–Infeld AdS black holes in higher dimensions. Phys. Rev. D 85, 104043 (2012). arXiv:1203.0118 [gr-qc]ADSCrossRefGoogle Scholar
  22. 22.
    Zou, D.C., Zhang, S.J., Wang, B.: Critical behavior of Born–Infeld AdS black holes in the extended phase space thermodynamics. Phys. Rev. D 89(4), 044002 (2014). arXiv:1311.7299 [hep-th]ADSCrossRefGoogle Scholar
  23. 23.
    Fernando, S., Krug, D.: Charged black hole solutions in Einstein–Born–Infeld gravity with a cosmological constant. Gen. Relativ. Gravit. 35, 129 (2003). arXiv:hep-th/0306120 ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Dey, T.K.: Born-Infeld black holes in the presence of a cosmological constant. Phys. Lett. B 595, 484 (2004). arXiv:hep-th/0406169 ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Cai, R.G., Pang, D.W., Wang, A.: Born–Infeld black holes in (A)dS spaces. Phys. Rev. D 70, 124034 (2004). arXiv:hep-th/0410158 ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Holmes, P.: Poincare, celestial mechanics, dynamical-systems theory and “chaos”. Phys. Rep. 193, 137 (1990)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Aslanov, V.S.: Rigid Body Dynamics for Space Applications. Butterworth-Heinemann Press, Oxford (2017)zbMATHGoogle Scholar
  28. 28.
    Felderhof, B.U.: Dynamics of the diffuse gas-liquid interface near the critical point. Physica D 48, 541 (1970)Google Scholar
  29. 29.
    Holmes, P.: A nonlinear oscillator with a strange attractor. Philos. Trans. R. Soc. A 292, 419 (1979)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Theoretical Physics and CosmologyZhejiang University of TechnologyHangzhouChina

Personalised recommendations