Advertisement

Approximate spacetime for neutron stars

  • Francisco Frutos-AlfaroEmail author
Research Article
  • 52 Downloads

Abstract

An approximate realistic metric representing the spacetime of neutron stars is obtained by perturbing the Kerr metric. This metric has five parameters, namely the mass, spin or angular momentum, mass quadrupole, spin octupole and mass hexadecapole. Moreover, a version of the Hartle–Thorne metric containing these parameters is constructed by means of a series transformation between these spacetimes and solving the Einstein field equations. The form of the Pappas metric in Schwarzschild spherical coordinates is found. The three relativistic multipole structures are compared.

Keywords

Relativistic multipole moments Neutron stars Stationary spacetimes 

Notes

References

  1. 1.
    Berti, E., et al.: Testing general relativity with present and future astrophysical observations. Class. Quantum Gravity 32(24), 243001 (2015).  https://doi.org/10.1088/0264-9381/32/24/243001 ADSCrossRefGoogle Scholar
  2. 2.
    Berti, E., Frances, F., Maniopoulou, A., Bruni, M.: Rotating neutrons stars: an invariant comparison of approximate and numerical spacetime models. Mon. Not. R. Astron. Soc. 358, 923–938 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08812.x ADSCrossRefGoogle Scholar
  3. 3.
    Camenzind, M.: Compact Objects in Astrophysics. Springer, Berlin (2007)Google Scholar
  4. 4.
    Chaverri-Miranda, F., Frutos-Alfaro, F., Gómez-Ovarez, P., Oliva-Mercado, A.: Innermost Stable Circular Orbits of a Kerr-Like Metric with Quadrupole. (2017). arXiv:1707.08663
  5. 5.
    Ernst, F.J.: New formulation of the axially symmetric gravitational field problem. Phys. Rev. 167(5), 1175–1177 (1968).  https://doi.org/10.1103/PhysRev.167.1175 ADSCrossRefGoogle Scholar
  6. 6.
    Fodor, G., Hoenselaers, C., Perjés, Z.: Multipole moments of axisymmetric systems in relativity. J. Math. Phys. 30, 2252–2257 (1989).  https://doi.org/10.1063/1.528551 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Frutos-Alfaro, F., Retana-Montenegro, E., Cordero-García, I., Bonatti-González, J.: Metric of a slow rotating body with quadrupole moment from the Erez–Rosen metric. Int. J. Astron. Astrophys. 3(4), 431–437 (2013).  https://doi.org/10.4236/ijaa.2013.34051 CrossRefGoogle Scholar
  8. 8.
    Frutos-Alfaro, F., Montero-Camacho, P., Araya-Arguedas, M., Bonatti-González, J.: Approximate metric for a rotating deformed mass. Int. J. Astron. Astrophys. 5(1), 1–10 (2015).  https://doi.org/10.15517/10.4236/ijaa.2015.51001 CrossRefGoogle Scholar
  9. 9.
    Frutos-Alfaro, F., Soffel, M.: On the post-linear quadrupole–quadrupole metric. Revista de Matemática: Teoría y Aplicaciones 24(2), 239–255 (2017).  https://doi.org/10.15517/rmta.v24i2.29856 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Frutos-Alfaro, F.: Approximate Kerr-like metric with quadrupole. Int. J. Astron. Astrophys. 6, 334–345 (2016).  https://doi.org/10.4236/ijaa.2016.63028 CrossRefGoogle Scholar
  11. 11.
    Hartle, J.B., Thorne, K.S.: Slowly rotating relativistic stars. II. Models for neutron stars and supermassive stars. Astrophys. J. 153, 807–834 (1968).  https://doi.org/10.1086/149707 ADSCrossRefGoogle Scholar
  12. 12.
    Lattimer, J.M., Prakash, M.: The physics of neutron stars. Science 304, 536–542 (2004).  https://doi.org/10.1126/science.1090720 ADSCrossRefGoogle Scholar
  13. 13.
    Lewis, T.: Some special solutions of the equations of axially symmetric gravitational fields. Proc. R. Soc. Lond. A 136, 176–192 (1932).  https://doi.org/10.1098/rspa.1932.0073 ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Manko, V.S., Novikov, I.D.: Generalizations of the Kerr and Kerr–Newman metrics possessing an arbitrary set of mass-multipole moments. Class. Quantum Gravity 9, 2477–2487 (1992).  https://doi.org/10.1088/0264-9381/9/11/013 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pachón, L.A., Rueda, J.A., Sanabria-Gómez, J.D.: Realistic exact solution for the exterior field of a rotating neutron star. Phys. Rev. D 73(10), 104038 (2006).  https://doi.org/10.1103/PhysRevD.73.104038 ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Pappas, G. Apostolatos, T.A.: Multipole Moments of Numerical Spacetimes. (2012). arXiv:1211.6299
  17. 17.
    Pappas, G.: An accurate metric for the spacetime around neutron stars. Mon. Not. R. Astron. Soc. 466(4), 4381–4394 (2017).  https://doi.org/10.1093/mnras/stx019 ADSCrossRefGoogle Scholar
  18. 18.
    Quevedo, H., Mashhoon, B.: Generalization of Kerr spacetime. Phys. Rev. D 43(12), 3902–3906 (1991).  https://doi.org/10.1103/PhysRevD.43.3902 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Ryan, F.D.: Spinning boson stars with large self-interaction. Phys. Rev. D 55(10), 6081–6091 (1997).  https://doi.org/10.1103/PhysRevD.55.6081 ADSCrossRefGoogle Scholar
  20. 20.
    Stergioulas, N.: Rotating stars in relativity. Living Rev. Relativ. (2003).  https://doi.org/10.12942/lrr-2003-3 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yagi, K., Kyutoku, K., Pappas, G., Yunes, N., Apostolatos, T.A.: Effective no-hair relations for neutron stars and quark stars: relativistic results. Phys. Rev. D 89, 124013 (2014).  https://doi.org/10.1103/PhysRevD.89.124013 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics, Space Research Center and Laboratory of Theoretical Physics and Computation of the University of Costa Rica, San JoséSan PedroCosta Rica

Personalised recommendations