Advertisement

Busting up binaries: encounters between compact binaries and a supermassive black hole

  • Eric Addison
  • Miguel Gracia-Linares
  • Pablo LagunaEmail author
  • Shane L. Larson
Editor’s Choice (Research Article)

Abstract

Close encounters between compact object binaries and a supermassive black hole are plausible at galactic centers. We present results from a numerical study of close to 13 million such encounters. Consistent with previous studies, we found that disrupted binaries produce bound extreme-mass-ratio binaries with eccentricities of \(\sim 0.97\) which circularize dramatically by the time they enter the classical LISA sensitivity band. We also investigated the regions of parameter space for binary survival and estimated the distribution of orbital parameters post-encounter. Our results showed that the semi-major axis of the population of surviving binaries is not significantly affected by the encounter. On the other hand, the eccentricity does; it increases in most cases. As a consequence, the encounter with the super-massive black hole accelerates the merger of the surviving binary, increasing the predicted merger rates by up to \(1\%\).

Keywords

Supermassive black holes Binaries Gravitational waves 

Notes

Acknowledgements

PL supported by NSF grants 1806580, 1550461, 1505824. EA and SLL supported by NSF grant PHY-0970152, and from NASA award NNX13AM10G.

References

  1. 1.
    Abbott, B.P., et al.: Phys. Rev. Lett. 116, 061102 (2016).  https://doi.org/10.1103/PhysRevLett.116.061102 MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Abbott, B.P., et al.: Phys. Rev. Lett. 116, 241103 (2016).  https://doi.org/10.1103/PhysRevLett.116.241103 CrossRefADSGoogle Scholar
  3. 3.
    Abbott, B.P., et al.: Phys. Rev. Lett. 118, 221101 (2017).  https://doi.org/10.1103/PhysRevLett.118.221101 CrossRefADSGoogle Scholar
  4. 4.
    Abbott, B.P., et al.: Astrophys. J. Lett. 851(2), L35 (2017)CrossRefADSGoogle Scholar
  5. 5.
    Abbott, B.P., et al.: Phys. Rev. Lett. 119, 141101 (2017).  https://doi.org/10.1103/PhysRevLett.119.141101 CrossRefADSGoogle Scholar
  6. 6.
    Abbott, B.P., et al.: Phys. Rev. Lett. 119, 161101 (2017).  https://doi.org/10.1103/PhysRevLett.119.161101 CrossRefADSGoogle Scholar
  7. 7.
    Hills, J.G.: Nature 331, 687 (1988).  https://doi.org/10.1038/331687a0 CrossRefADSGoogle Scholar
  8. 8.
    Gualandris, A., Portegies Zwart, S., Sipior, M.S.: MNRAS 363, 223 (2005).  https://doi.org/10.1111/j.1365-2966.2005.09433.x CrossRefADSGoogle Scholar
  9. 9.
    Antonini, F., Faber, J., Gualandris, A., Merritt, D.: ApJ 713, 90 (2010).  https://doi.org/10.1088/0004-637X/713/1/90 CrossRefADSGoogle Scholar
  10. 10.
    Sari, R., Kobayashi, S., Rossi, E.M.: ApJ 708, 605 (2010).  https://doi.org/10.1088/0004-637X/708/1/605 CrossRefADSGoogle Scholar
  11. 11.
    Miller, M.C., Freitag, M., Hamilton, D.P., Lauburg, V.M.: ApJ 631, L117 (2005).  https://doi.org/10.1086/497335 CrossRefADSGoogle Scholar
  12. 12.
    Antonini, F., Perets, H.B.: ApJ 757, 27 (2012).  https://doi.org/10.1088/0004-637X/757/1/27 CrossRefADSGoogle Scholar
  13. 13.
    Antonini, F., Murray, N., Mikkola, S.: ApJ 781, 45 (2014).  https://doi.org/10.1088/0004-637X/781/1/45 CrossRefADSGoogle Scholar
  14. 14.
    Raghavan, D., McAlister, H.A., Henry, T.J., Latham, D.W., Marcy, G.W., Mason, B.D., Gies, D.R., White, R.J., ten Brummelaar, T.A.: ApJS 190, 1 (2010).  https://doi.org/10.1088/0067-0049/190/1/1 CrossRefADSGoogle Scholar
  15. 15.
  16. 16.
    Muno, M.P., Pfahl, E., Baganoff, F.K., Brandt, W.N., Ghez, A., Lu, J., Morris, M.R.: ApJ 622, L113 (2005).  https://doi.org/10.1086/429721 CrossRefADSGoogle Scholar
  17. 17.
    O’Leary, R.M., Kocsis, B., Loeb, A.: MNRAS 395, 2127 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14653.x CrossRefADSGoogle Scholar
  18. 18.
    Ghez, A.M., Salim, S., Hornstein, S.D., Tanner, A., Lu, J.R., Morris, M., Becklin, E.E., Duchêne, G.: ApJ 620, 744 (2005).  https://doi.org/10.1086/427175 CrossRefADSGoogle Scholar
  19. 19.
    Ghez, A.M., Salim, S., Weinberg, N.N., Lu, J.R., Do, T., Dunn, J.K., Matthews, K., Morris, M.R., Yelda, S., Becklin, E.E., Kremenek, T., Milosavljevic, M., Naiman, J.: ApJ 689, 1044 (2008).  https://doi.org/10.1086/592738 CrossRefADSGoogle Scholar
  20. 20.
    Ghez, A., Morris, M., Lu, J., Weinberg, N., Matthews, K., Alexander, T., Armitage, P., Becklin, E., Brown, W., Campbell, R., Do, T., Eckart, A., Genzel, R., Gould, A., Hansen, B., Ho, L., Lo, F., Loeb, A., Melia, F., Merritt, D., Milosavljevic, M., Perets, H., Rasio, F., Reid, M., Salim, S., Schödel, R., Yelda, S.: The astronomy and astrophysics decadal survey. Astronomy 2010, 89 (2009)Google Scholar
  21. 21.
    Peters, P.C.: Phys. Rev. 136, 1224 (1964).  https://doi.org/10.1103/PhysRev.136.B1224 CrossRefADSGoogle Scholar
  22. 22.
    Hamilton, D.P., Burns, J.A.: Icarus 92, 118 (1991).  https://doi.org/10.1016/0019-1035(91)90039-V CrossRefADSGoogle Scholar
  23. 23.
    Hamilton, D.P., Burns, J.A.: Icarus 96, 43 (1992).  https://doi.org/10.1016/0019-1035(92)90005-R CrossRefADSGoogle Scholar
  24. 24.
    Heggie, D.C., Rasio, F.A.: MNRAS 282, 1064 (1996)CrossRefADSGoogle Scholar
  25. 25.
    Mikkola, S., Tanikawa, K.: MNRAS 310, 745 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02982.x CrossRefADSGoogle Scholar
  26. 26.
    Mikkola, S., Aarseth, S.J.: Celest. Mech. Dyn. Astron. 57, 439 (1993).  https://doi.org/10.1007/BF00695714 CrossRefADSGoogle Scholar
  27. 27.
    Scott, D.W.: Biometrika 66(3), 605 (1979).  https://doi.org/10.2307/2335182 MathSciNetCrossRefGoogle Scholar
  28. 28.
    Brown, W.R., Geller, M.J., Kenyon, S.J., Kurtz, M.J.: ApJ 622, L33 (2005).  https://doi.org/10.1086/429378 CrossRefADSGoogle Scholar
  29. 29.
    Edelmann, H., Napiwotzki, R., Heber, U., Christlieb, N., Reimers, D.: ApJ 634, L181 (2005).  https://doi.org/10.1086/498940 CrossRefADSGoogle Scholar
  30. 30.
    Yu, Q., Tremaine, S.: ApJ 599, 1129 (2003).  https://doi.org/10.1086/379546 CrossRefADSGoogle Scholar
  31. 31.
    Bromley, B.C., Kenyon, S.J., Geller, M.J., Barcikowski, E., Brown, W.R., Kurtz, M.J.: ApJ 653, 1194 (2006).  https://doi.org/10.1086/508419 CrossRefADSGoogle Scholar
  32. 32.
    Amaro-Seoane, P., Gair, J.R., Freitag, M., Miller, M.C., Mandel, I., Cutler, C.J., Babak, S.: Class. Quantum Gravity 24(17), R113 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Hils, D., Bender, P.L.: ApJ 445, L7 (1995).  https://doi.org/10.1086/187876 CrossRefADSGoogle Scholar
  34. 34.
    Sigurdsson, S., Rees, M.J.: MNRAS 284, 318 (1997)CrossRefADSGoogle Scholar
  35. 35.
  36. 36.
    Hopman, C., Alexander, T.: ApJ 629, 362 (2005).  https://doi.org/10.1086/431475 CrossRefADSGoogle Scholar
  37. 37.
    Merritt, D., Alexander, T., Mikkola, S., Will, C.M.: Phys. Rev. D 84(4), 044024 (2011).  https://doi.org/10.1103/PhysRevD.84.044024 CrossRefADSGoogle Scholar
  38. 38.
    Abadie, J., Abbott, B.P., Abbott, R., Abernathy, M., Accadia, T., Acernese, F., Adams, C., Adhikari, R., Ajith, P., Allen, B., et al.: Class. Quantum Gravity 27(17), 173001 (2010).  https://doi.org/10.1088/0264-9381/27/17/173001 CrossRefADSGoogle Scholar
  39. 39.
    Kalogera, V., Narayan, R., Spergel, D.N., Taylor, J.H.: Astrophys. J. 556(1), 340 (2001)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Eric Addison
    • 1
  • Miguel Gracia-Linares
    • 2
  • Pablo Laguna
    • 2
    Email author
  • Shane L. Larson
    • 3
    • 4
  1. 1.Department of PhysicsUtah State UniversityLoganUSA
  2. 2.Center for Relativistic Astrophysics and School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Center for Interdisciplinary Exploration and Research in AstrophysicsNorthwestern UniversityEvanstonUSA
  4. 4.Department of AstronomyAdler PlanetariumChicagoUSA

Personalised recommendations