Entanglement entropy of compactified branes and phase transition
- 7 Downloads
Abstract
We first calculate the holographic entanglement entropy of M5 branes on a circle and see that it has a phase transition when decreasing the compactified radius. In particular, it is shown that the entanglement entropy scales as \(N^3\). Next, we investigate the holographic entanglement entropy of a \(D0+D4\) system on a circle and see that it scales as \(N^2\) at low energy, as in gauge theory with instantons. However, at high energy it transforms to a phase that scales as \(N^3\), as an M5 brane system. We also present the general form of holographic entanglement entropy of Dp, \(D_p+D_{p+4}\) and M-branes on a circle and see some simple relations among them. Finally, we present an analytic method to prove that they all have phase transitions from connected to disconnected surfaces as one increases the line segment that divides the entangling regions.
Keywords
Holographic entanglement entropy M5 branes D branesNotes
References
- 1.Hooft, Gt.: On the quantum structure of a black hole. Nucl. Phys. B 256, 727 (1985)Google Scholar
- 2.Bombelli, L., Koul, R.K., Lee, J.H., Sorkin, R.D.: A quantum source of entropy for black holes. Phys. Rev. D 34, 373 (1986)ADSMathSciNetCrossRefGoogle Scholar
- 3.Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71, 666 (1993). arXiv:hep-th/9303048 ADSMathSciNetCrossRefGoogle Scholar
- 4.Calabrese, P., Cardy, J.L.: Entanglement entropy and quantum eld theory. J. Stat. Mech. 0406, 06002 (2004). arXiv:hep-th/0405152 CrossRefGoogle Scholar
- 5.Calabrese, P., Cardy, J.L.: Entanglement entropy and quantum field theory: A non-technical introduction. Int. J. Quant. Inf. 4, 429 (2006). arXiv:quant-ph/0505193 CrossRefGoogle Scholar
- 6.Calabrese, P., Cardy, J.L.: Entanglement entropy and conformal eld theory. J. Phys. A 42, 504005 (2009). arXiv:0905.4013 [hep-th]MathSciNetCrossRefGoogle Scholar
- 7.Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008). arXiv:quant-ph/0703044 ADSMathSciNetCrossRefGoogle Scholar
- 8.Eisert, J., Cramer, M., Plenio, M.B.: Area laws for the entanglement entropy: a review. Rev. Mod. Phys. 82, 277 (2010). arXiv:0808.3773 [quant-ph]ADSCrossRefGoogle Scholar
- 9.Kitaev, A., Preskill, J.: Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006). arXiv:hep-th/0510092 ADSMathSciNetCrossRefGoogle Scholar
- 10.Van Raamsdonk, M.: Comments on quantum gravity and entanglement. arXiv:0907.2939 [hep-th]
- 11.Van Raamsdonk, M.: Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 42, 2323 (2010). arXiv:1005.3035 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 12.Myers, R.C., Pourhasan, R., Smolkin, M.: On spacetime entanglement. JHEP 1306, 013 (2013). arXiv:1304.2030 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 13.Balasubramanian, V., Czech, B., Chowdhury, B.D., de Boer, J.: The entropy of a hole in spacetime. JHEP 1310, 220 (2013). arXiv:1305.0856 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 14.Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009). arXiv:quant-ph/0702225 ADSMathSciNetCrossRefGoogle Scholar
- 15.Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). [Int. J. Theor. Phys. 38, 1113 (1999)] arXiv:hep-th/9711200
- 16.Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105 (1998). arXiv:hep-th/9802109 ADSMathSciNetCrossRefGoogle Scholar
- 17.Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150 ADSMathSciNetCrossRefGoogle Scholar
- 18.Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006). arXiv:hep-th/0603001 ADSMathSciNetCrossRefGoogle Scholar
- 19.Ryu, S., Takayanagi, T.: Aspects of holographic entanglement entropy. JHEP 0608, 045 (2006). arXiv:hep-th/0605073 ADSMathSciNetCrossRefGoogle Scholar
- 20.Takayanagi, T.: Entanglement entropy from a holographic viewpoint. Class. Quant. Grav. 29, 153001 (2012). arXiv:1204.2450 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 21.Fursaev, D.V.: Proof of the holographic formula for entanglement entropy. JHEP 0609, 018 (2006). arXiv:hep-th/0606184 ADSMathSciNetCrossRefGoogle Scholar
- 22.Lewkowycz, A., Maldacena, J.: Generalized gravitational entropy. JHEP 1308, 090 (2013). arXiv:1304.4926 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 23.Casini, H., Huerta, M., Myers, R.C.: Towards a derivation of holographic entanglement entropy. JHEP 1105, 036 (2011). arXiv:1102.0440 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 24.Nishioka, T.: Entanglement entropy: holography and renormalization group. Rev. Mod. Phys. 90, 035007 (2018). arXiv:1801.10352 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 25.Albash, T., Johnson, C.V.: Holographic Studies of Entanglement Entropy in Superconductors. JHEP 1205, 079 (2012). arXiv:1202.2605 [hep-th]ADSCrossRefGoogle Scholar
- 26.Cai, R.G., He, S., Li, L., Zhang, Y.L.: Holographic entanglement entropy in insulator/superconductor transition. JHEP 1207, 088 (2012). arXiv:1203.6620 [hep-th]ADSCrossRefGoogle Scholar
- 27.Klebanov, I.R., Kutasov, D., Murugan, A.: Entanglement as a probe of confinement. Nucl. Phys. B 796, 274 (2008). arXiv:0709.2140 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 28.Hartnoll, S.A., Radicevic, D.: Holographic order parameter for charge fractionalization. Phys. Rev. D 86, 066001 (2012). arXiv:1205.5291 [hep-th]ADSCrossRefGoogle Scholar
- 29.Pakman, A., Parnachev, A.: Topological entanglement entropy and holography. JHEP 0807, 097 (2008). arXiv:0805.1891 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 30.Ben-Ami, O., Carmi, D., Sonnenschein, J.: Holographic entanglement entropy of multiple strips. JHEP 11, 144 (2014). arXiv:1409.6305 [hep-th]ADSCrossRefGoogle Scholar
- 31.Renyi, A.: On measures of information and entropy. In: Procedings of the Fourth Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, p. 547 (1961)Google Scholar
- 32.Headrick, M.: Entanglement Renyi entropies in holographic theories. Phys. Rev. D 82, 126010 (2010). arXiv:1006.0047 [hep-th]ADSCrossRefGoogle Scholar
- 33.Klebanov, I.R., Pufu, S.S., Sachdev, S., Safdi, B.R.: Renyi entropies for free field theories. JHEP 1204, 074 (2012). arXiv:1111.6290 [hep-th]ADSCrossRefGoogle Scholar
- 34.Fursaev, D.V.: Entanglement Renyi entropies in conformal field theories and holography. JHEP 1205, 080 (2012). arXiv:1201.1702 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 35.Hung, L.Y., Myers, R.C., Smolkin, M., Yale, A.: Holographic calculations of Renyi entropy. JHEP 1112, 047 (2011). arXiv:1110.1084 [hep-th]ADSCrossRefGoogle Scholar
- 36.Belin, A., Maloney, A., Matsuura, S.: Holographic phases of Renyi entropies. JHEP 1312, 050 (2013). arXiv:1306.2640 [hep-th]ADSCrossRefGoogle Scholar
- 37.Belin, A., Hung, L.Y., Maloney, A., Matsuura, S., Myers, R.C., Sierens, T.: Holographic charged Renyi entropies. JHEP 1312, 059 (2013). arXiv:1310.4180 [hep-th]ADSCrossRefGoogle Scholar
- 38.Belin, A., Hung, L.Y., Maloney, A., Matsuuras, S.: Charged Renyi entropies and holographic superconductors. JHEP 1501, 059 (2015). arXiv:1407.5630 [hep-th]ADSCrossRefGoogle Scholar
- 39.Gubser, S.S., Klebanov, I.R., Peet, A.W.: Entropy and temperature of black 3-branes. Phys. Rev. D 54, 3915 (1996). arXiv:hep-th/9602135 ADSMathSciNetCrossRefGoogle Scholar
- 40.Klebanov, I.R., Tseytlin, A.A.: Entropy of near-extremal black p-branes. Nucl. Phys. B 475, 164 (1996). arXiv:hep-th/9604089 ADSMathSciNetCrossRefGoogle Scholar
- 41.Douglas, M.R.: On D=5 super Yang–Mills theory and (2,0) theory. JHEP 1102, 011 (2011). arXiv:1012.2880 [hep-th]ADSMathSciNetzbMATHGoogle Scholar
- 42.Lambert, N., Papageorgakis, C., Schmidt-Sommerfeld, M.: M5-branes, D4-branes and quantum 5D super-Yang–Mills. JHEP 1101, 083 (2011). arXiv:1012.2882 [hep-th]ADSMathSciNetCrossRefGoogle Scholar
- 43.Quijada, E., Boschi-Filho, H.: Entanglement entropy for D3-, M2- and M5-brane backgrounds. arXiv:1711.08505 [hep-th]