The existence of smooth solutions in q-models
Abstract
The q-models are scenarios that may explain the smallness of the cosmological constant (Klinkhamer and Volovik in Phys Rev D 77:085015, 2008; Phys Rev D 78:063528, 2008; JETP Lett 88:289, 2008; Mod Phys Lett A 31(28):1650160, 2016; JETP Lett 91:259, 2010; Phys Rev D 79:063527, 2009; J Phys Conf Ser 314:012004, 2011). The vacuum in these theories is presented as a self-sustainable medium and include a new degree of freedom, the q-variable, which establishes the equilibrium of the quantum vacuum. In the present work, the Cauchy formulation for these models is studied in detail. It is known that there exist some limits in which these theories are described by an F(R) gravity model, and these models posses a well posed Cauchy problem. This paper shows that the Cauchy problem is well posed even not reaching this limit. By use of some mathematical theorems about second order non linear systems, it is shown that these scenarios admit a smooth solution for at least a finite time when some specific type of initial conditions are imposed. Some technical conditions of Ringstrom (The Cauchy problem in general relativity, European Mathematical Society, Warsaw, 2000) play an important role in this discussion.
Keywords
Cauchy problem Cosmological constant Alternative gravity theories Global hyperbolic spacesNotes
Acknowledgements
Both authors are supported by CONICET, Argentina. O.P.S is supported by the Beca Externa Jovenes Investigadores of CONICET. O.P.S warmly acknowledge the Steklov Mathematical Institute of the Russian Academy of Sciences in Moscow, were part of this work has been done, for their hospitality.
References
- 1.Klinkhamer, F., Volovik, G.: Phys. Rev. D 77, 085015 (2008)ADSCrossRefGoogle Scholar
- 2.Klinkhamer, F., Volovik, G.: Phys. Rev. D 78, 063528 (2008)ADSCrossRefGoogle Scholar
- 3.Klinkhamer, F., Volovik, G.: JETP Lett. 88, 289 (2008)ADSCrossRefGoogle Scholar
- 4.Klinkhamer, F., Volovik, G.: Mod. Phys. Lett. A 31(28), 1650160 (2016)ADSCrossRefGoogle Scholar
- 5.Klinkhamer, F., Volovik, G.: JETP Lett. 91, 259 (2010)ADSCrossRefGoogle Scholar
- 6.Klinkhamer, F., Volovik, G.: Phys. Rev. D 79, 063527 (2009)ADSCrossRefGoogle Scholar
- 7.Klinkhamer, F., Volovik, G.: J. Phys. Conf. Ser. 314, 012004 (2011)CrossRefGoogle Scholar
- 8.Marsden, J., Fischer, A.: Commun. Math. Phys. 28, 1 (1972)ADSCrossRefGoogle Scholar
- 9.Taylor, M.: Partial differential equations, Volume 3 of Nonlinear Equations. Springer, Berlin (2010)Google Scholar
- 10.Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Wiley, Hoboken (1991)zbMATHGoogle Scholar
- 11.Ringstrom, H.: The Cauchy Problem in General Relativity. European Mathematical Society, Zürich, Switzerland (2000)zbMATHGoogle Scholar
- 12.Riess, A.G., et al.: Astron. J. 116, 1009–1038 (1998)ADSCrossRefGoogle Scholar
- 13.Perlmutter, S., et al.: Astrophys. J. 517, 565–586 (1999)ADSCrossRefGoogle Scholar
- 14.Perlmutter, S., et al.: Nature 391, 51–54 (1998)ADSCrossRefGoogle Scholar
- 15.Rubin, V., Ford, W.: Astrophys. J. 159, 379 (1970)ADSCrossRefGoogle Scholar
- 16.Rubin, V., Burstein, D., Ford Jr., W., Thonnard, N.: Astrophys. J. 289, 81 (1985)ADSCrossRefGoogle Scholar
- 17.Carroll, S., Press, W., Turner, E.: Annu. Rev. Astron. Astrophys. 30, 499 (1992)ADSCrossRefGoogle Scholar
- 18.Dolgov, A.: The Very Early Universe. In: Gibbons, G., Hawking, S., Tiklos, S. (eds.) Cambridge University Press, Cambridge (1982)Google Scholar
- 19.Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)ADSCrossRefGoogle Scholar
- 20.Dolgov, A., Urban, F.: Phys. Rev. D 77, 083503 (2008)ADSCrossRefGoogle Scholar
- 21.Carroll, S.: Phys. Rev. Lett. 81, 3067 (1998)ADSCrossRefGoogle Scholar
- 22.Dolgov, A.: JETP Lett. 41, 345 (1985)ADSGoogle Scholar
- 23.Dolgov, A.: Phys. Rev. D 55, 5881 (1997)ADSCrossRefGoogle Scholar
- 24.Bjorken, J.: Ann. Phys. 24, 174 (1963)ADSMathSciNetCrossRefGoogle Scholar
- 25.Kraus, P., Tomboulis, E.: Phys. Rev. D 66, 045015 (2002)ADSCrossRefGoogle Scholar
- 26.Rubakov, V., Tinyakov, P.: Phys. Rev. D 61, 087503 (2000)ADSMathSciNetCrossRefGoogle Scholar
- 27.Emelyanov, V., Klinkhamer, F.: Phys. Rev. D 85, 063522 (2012)ADSCrossRefGoogle Scholar
- 28.Emelyanov, V., Klinkhamer, F.: Int. J. Mod. Phys. D 21, 1250025 (2012)ADSCrossRefGoogle Scholar
- 29.Emelyanov, V., Klinkhamer, F.: Phys. Rev. D 85, 103508 (2012)ADSCrossRefGoogle Scholar
- 30.Klinkhamer, F.: Phys. Rev. D 85, 023509 (2012)ADSCrossRefGoogle Scholar
- 31.Emelyanov, V., Klinkhamer, F.: Phys. Rev. D 86, 027302 (2012)ADSCrossRefGoogle Scholar
- 32.Santillan, O., Scornavacche, M.: JCAP 10, 048 (2017)ADSCrossRefGoogle Scholar
- 33.Calogero, F.: Phys. Lett. A 238, 335 (1997)ADSCrossRefGoogle Scholar
- 34.Vigil, J.Estrada, Masperi, L.: Mod. Phys. Lett. A 13, 423 (1998)ADSCrossRefGoogle Scholar
- 35.Frieman, J., Hill, C., Watkins, R.: Phys. Rev. D 46, 1226 (1992)ADSCrossRefGoogle Scholar
- 36.Hill, C., Ross, G.: Nucl. Phys. B 311, 253 (1988)ADSCrossRefGoogle Scholar
- 37.Hill, C., Ross, G.: Phys. Lett. B 203, 125 (1988)ADSCrossRefGoogle Scholar
- 38.Gabbanelli, L., Santillan, O.: Mod. Phys. Lett. A 31(25), 1650143 (2016)Google Scholar
- 39.Capozziello, S., Vignolo, S.: Class. Quant. Grav. 26, 175013 (2009)ADSCrossRefGoogle Scholar
- 40.Cappozziello, S., Vignolo, S.: Int. J. Geom. Meth. Mod. Phys. 8, 167 (2011)CrossRefGoogle Scholar
- 41.Friedrich, H., Rendall, A.D.: The Cauchy problem for the Einstein equations. In: Schmidt, B.G. (ed.) Einsteins Field Equations 18 and Their Physical Implications, Lecture Notes in Physics, vol. 540. Springer, Berlin (2000)Google Scholar
- 42.Rendall, A.: Class. Quant. Grav. 23, 1557 (2006)ADSCrossRefGoogle Scholar
- 43.Alho, A., Mena, F., Valiente Kroon, J.: Adv. Theor. Math. Phys. 21, 857 (2017)MathSciNetCrossRefGoogle Scholar
- 44.Pugliese, D., Valiente Kroon, J.: Gen. Relativ. Gravit. 45, 1247 (2013)ADSCrossRefGoogle Scholar
- 45.Reall, H., Papallo, G.: Phys. Rev. D 96, 044019 (2017)ADSMathSciNetCrossRefGoogle Scholar
- 46.Choque-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford Mathematical Monographs (2009)Google Scholar
- 47.Leray, J.: Hyperbolic Differential Equations. Institute for Advanced Study (1955)Google Scholar
- 48.Choquet-Bruhat, Y.: Acta Math. 88, 141 (1952)ADSMathSciNetCrossRefGoogle Scholar
- 49.Wald, R.: General Relativity. Chicago University Press, Chicago (1984)CrossRefGoogle Scholar
- 50.Hawking, S.: The Large Scale Structure of the Space-Time. Cambridge Monographs on Mathematical Physics (1973)Google Scholar
- 51.Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian Geometry. CRC press, Boca Raton (1981)zbMATHGoogle Scholar
- 52.O Neill, B.: Semi-Riemannian Geometry with Applications to General Relativity. Academic Press, Cambridge (1983)Google Scholar